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1 Measure theory

1.1 The probability space

In the first level probability course, we learnt about an elementary version of the probability
space. This consisted of a sample space Ω, which is the set of all possible outcome of an
experiment. Then we defined an event to be a subset of the sample space. We also defined
probability P : Ω 7→ [0, 1] as a function satisfying certain rules. The issue with this setup is
that it is too naive to work in general, in particular for continuous sample space (e.g. when
we measure lifetime of a bulb). If you remember, certain technicalities were swept under the
rug. For example, how do we know that a probability measure satisfying the properties we
outline exist? Where did the probability density functions (pdf) come from? Probably there
were many more such questions, which are left unanswered.

The goal now is to construct a rigorous version of the probability space. It consists of
three objects.

• Sample space

• sigma-algebra (or σ-algebra)

• Probability measure.

The sample space Ω is simply a set, not necessarily a subset of R. (We think of it as an
abstract set with no additional structure, and with no relation to any experiment for the
moment). The “space of events” is going to be replaced by an object called a σ-algebra
which we now define.

Definition 1.1 (σ-algebra). A collection of subsets F of Ω is called a σ-algebra if it satisfies
the following conditions,

• Ω ∈ F

• If A ∈ F then Ac ∈ F

• If {An}n≥1 is a countable collection in F , then ∪∞
n=1An ∈ F .

The sets in F are called measurable sets.

Exercise 1.1. Let F be a σ-algebra. Suppose {Ai}i≥1 be a countable collection taken from
F . Which of the following is in F as well?

a. A1 ∩ A2.

b. ∩∞
i=1Ai.

c. A1 \ A2.

d. Ac
1 (complement of A1).
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e. ∅ (the emptyset).

f. ∩∞
i=1A

c
i , ∪∞

i=1A
c
i

The collection F := {A : A ⊂ Ω} is called the power set of Ω. This is clearly a σ-algebra
(Check!). In fact, this is the largest 1 σ-algebra possible. For a concrete example, think of
Ω = N and F to be all the subsets of N.

On the other hand, what is the smallest σ-algebra? It is easy to see that the candidate
for this is {∅,Ω}. Let’s venture a bit more: take A ⊂ Ω. What is the smallest σ-algebra
containing a set A? Notice that this σ-algebra must contain A,Ac,Ω, ∅. In fact a bit of
inspection shows that F = {A,Ac,Ω, ∅} is the smallest σ-algebra containing A (Check!).

Having gotten used to σ-algebras a bit, let us consider what happens if we take unions
and intersections of σ-algebras themselves. It is very easy to see that taking unions of two
σ-algebra does not necessarily produce a σ-algebra. Take for example Ω = {1, 2, . . . , 6}.
A = {1}, B = {2},

F1 = {∅, A,Ac,Ω}, F2 = {∅, B,Bc,Ω}, F1 ∪ F2 = {∅, A,Ac, B,Bc,Ω}

Since A ∪B = {1, 2} ̸∈ F1 ∪ F2, it is not a σ-algebra.

Lemma 1.2. Verify that if {Fi}i∈I is a collection of σ-algebras (not necessarily countable!)
then

F := ∩i∈IFi := {A : A ∈ Fi ∀i ∈ I}

is also a σ-algebra.

Proof. We verify the three criterions which make a σ-algebra. Note Ω is in all of Fi hence
Ω ∈ F . Suppose A ∈ F . Then A ∈ Fi for all i. Therefore, Ac ∈ Fi for all i since Fi is a
σ-algebra. Thus Ac ∈ F . Similarly, if An ∈ Fi for all n then A := ∪n≥1An ∈ Fi since Fi is a
σ-algebra. Therefore, A ∈ F .

Proposition 1.1 (Smallest σ-algebra exists). Consider a collection

A := {Ai : Ai ⊂ Ω, i ∈ I}.

Then there exists a smallest σ-algebra containing all the sets in A.

Proof. Let Σ denote the collection of all σ-algebras containing A. The set Σ is nonempty,
since clearly the power set 2Ω contains all the sets in A. Then G := ∩F∈ΣF is our required
σ-algebra (we employed Lemma 1.2 to ensure that this is a σ-algebra).

1largest in the sense of the ‘number’ of sets in them. To be more precise, F1 is smaller than F2 if F1 ⊆ F2
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Notation: The smallest σ-algebra containing a collection of sets A is denoted by σ(A).

Example 1.3. Suppose the countable collection A := {Ai}∞i=1 partition Ω, i.e., ∪Ai = Ω
and Ai ∩ Aj = ∅ if i ̸= j. Then σ(A) is described by all possible unions of the elements of
A. That is,

σ(A) = {B : B = ∪i∈S⊆NAi}
Prove this by

• first checking that {B : B = ∪i∈S⊆NAi} satisfies all the conditions in Definition 1.1,

• and then arguing that any sigma algebra containing A must contain {B : B =
∪i∈S⊆NAi}.

Exercise 1.4. Find the smallest σ-algebra containing two sets A,B, A ̸= B.

Exercise 1.5. Let Ω = N. Let A = {S ⊂ N : |S| < ∞}. Argue that this is NOT a
σ-algebra. Find σ(A). 2

Example 1.6. Let S = {H,T} be a set of two elements. Let

Ω =
∞⊗
i=1

S = {(x1, x2, . . . , ) : xi ∈ {H,T}}.

We can think of Ω as the set of all possible outcomes when a coin is flipped (countably)
infinitely many times. Let Gn = {A × Ω : A ⊂ Sn}. In words: Gn is all possible outcomes
where the first n outcomes are constrained to be in the some set A ⊂ Sn. Prove that Gn

is a σ-algebra by arguing that it satisfies all the conditions of Definition 1.1. Also convince
yourself that

G1 ⊂ G2 ⊂ G3 . . .

Here one can define G∞ to be the smallest σ-algebra containing all of Gn. Can you find an
event which is in G∞ but not in Gn for any n?

Exercise 1.7 (Thought experiment). Let B := {(a, b),−∞ < a < b < ∞ ∈ R} denote the
set of all finite intervals. Argue this is not a σ-algebra (easy). Think about how σ(B) might
look like? You should convince yourself that there is no reasonably simple way to ‘describe’
any such set in English.

We now define a very important σ-algebra.

Definition 1.2 (Borel σ-algebra on R). Borel σ-algebra on the real line (i.e. when Ω = R,
the real line), is defined as σ(τ) where

τ = {(a, b)−∞ < a < b < ∞}

That is the Borel σ-algebra on the real line is the smallest σ-algebra containing all the open
intervals. It is denoted by B(R) and it’s elements are called Borel sets.

2Ans: Power set of N.
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Borel sets are named after Emile Borel. See https://en.wikipedia.org/wiki/%C3%

89mile_Borel#/media/File:Emile_Borel-1932.jpg to learn more about this illustrious
gentleman.

Figure 1: Prof. Emile Borel (taken from Wiki).

Let us think a bit on what kind of sets are Borel sets.

Exercise 1.8. Show that B(R) contains

• All closed intervals of the form [a, b].

• All singletons {a}. All countable union of singletons.

• The cantor set. See https://en.wikipedia.org/wiki/Cantor_set.

In fact, it is quite hard to *think* of a set which is not Borel! But there exists such sets
and B(R) is not equal to the power set 2Ω. Check Wikipedia https://en.wikipedia.org/

wiki/Borel_set or your favourite website in the internet to find such horrible (or beautiful,
depending on the taste) beasts.

What kind of sets are not Borel? Is the set of Borel sets the power set? Remarkably,
there are such sets and it leads to weird paradoxes. We will come back to it briefly in the
next section.

Exercise 1.9. Let I be an interval. Let B(I) := {A ∩ I : A ∈ B(R)}. Prove that B(I) is a
σ-algebra. This σ algebra is called the Borel σ-algebra on I.

Generalization The definition of Borel sets can be generalized to arbitrary topological
space. If (Ω, τ) is a topological space with τ being the open sets, then B(Ω) denotes the
smallest σ-algebra containing all the open sets in τ . For example, for any metric space
(M,dM), we can take the topology to be one defined by the metric (i.e. open sets τ are
generated by B(x, r) := {y ∈ M : dM(x, y) < r} for x ∈ M, r > 0) and then the Borel sigma
algebra can be taken to be σ(τ). You can imagine how this expands the scope of defining
probability measures.

Exercise 1.10 (Borel sets in Rn). Use the above idea to define Borel σ-algebra in higher
dimensions {Rn}n≥2. This σ-algebra is denoted B(Rn).
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1.2 Measures and random variables

Definition 1.3 (Measure (space)/ probability (space)). Suppose (Ω,F) is a measure space.
A measure µ is a function µ : F 7→ [0,∞] which satisfies:

• µ(∅) = 0,

• (Countable Additivity) For any collection {An}n≥1 of disjoint sets in F ,

µ(∪∞
n=1An) =

∞∑
n=1

µ(An).

The triplet (Ω,F , µ) is sometimes called a measure space or measurable space. If µ

additionally satisfies µ(Ω) = 1, µ is called a probability measure and the triplet (Ω,F , µ)
is called a probability space.

Here are a few examples. Sometimes µ is called a distribution. We will come back to
it when we talk about random variables.

i. Let Ω = N and F = 2Ω. Let µ({i}) = pi where pi > 0 for all i ∈ N and
∑

i∈N pi = 1.
Finally, define µ(A) =

∑
i∈A pi. It is a simple exercise to check that µ is a probability

measure. Another name for the function pi is a probability mass function. Some
special cases: µ(i) = (1 − p)pi−1; p ∈ [0, 1] is the probability mass function of a

geometric random variable . If pi =
e−λλi

i!
for some λ > 0 is the pmf of Poisson(λ).

ii. Take Ω = R, F = B(R) (Borel sigma algebra) and a function f : R → [0,∞) satisfying∫∞
−∞ f(x)dx = 1. Define µ(A) =

∫
A
f(x)dx for any A ∈ B(R). This integral may not

make sense if you are not familiar with Lebesgue integration. We will get to it later.
But at this point it is enough to note that this defines a probability measure as soon
as Lebesgue integral satisfies certain obvious properties of integration. This measure
corresponds to the so called continuous distributions with f being the probability density
function. We will come back to it later.

iii. Let Ω = N and F = 2Ω and µ({i}) = 1. This corresponds to the so-called counting
measure. Indeed µ(A) = |A| where | · | is the cardinality.

iv. Take Ω = (a, b), F = B((a, b)) (Borel sigma algebra on the interval (a, b), recall Ex-
ercise 1.9). For any A ∈ B((a, b)) define λ(A) =

∫
A
dx. This measure is called the

Lebesgue measure on (a, b) and corresponds to the ‘length’ of an interval, our usual
notion of a ‘measure’.

A simple example when µ is not a measure is the following: take Ω = {0, 1} and F to
its power set. Let µ({0}) = µ({1}) = 1

2
and µ({0, 1}) = 2. Clearly this is not a measure as

1
2
+ 1

2
̸= 2.
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Exercise 1.11. Show that if A ⊂ B, and µ(B) < ∞ then µ(B\A) = µ(B)−µ(A). Conclude
that µ(A) ≤ µ(B).

We will mostly deal with probability spaces in what is to come. Please note in the
definition that measures only take non-negative values. Usually a probability measure will
be denoted by P.

Example 1.12. Here are two ways to explicitly construct a probability space modelling a
fair coin toss. Take Ω to be any set (e.g. [0,1]). Take A ⊂ Ω such that A ̸= Ω. Take F =
{∅, A,Ac,Ω}. Define the probability measure P such that P(A) = 1/2, P(∅) = 0 = 1−P(Ω),
and P(Ac) = 1/2. Check that this definition satisfies all the conditions of the definition

above. On the other hand, we can define Ω̃ = {H,T}, F = 2Ω̃ and P({H}) = P({T}) = 1
2
,

P({H,T}) = 1 and P(∅) = 0.

Remark 1.13. Example 1.12 illustrates an important concept. Whenever we talk of an
experiment with a random outcome (e.g. lifetime of a bulb, rolling a die, counting the
number of days it rained in July), there is always a probability space in the background.
It is usually kept implicit. It is also important to note that one could work with different
probability spaces for the same random experiment.

Example 1.14 (Non measurable set.). Let us argue that there is a set which is not Borel. To
do that imagine there is a measure µ which measures ‘length’ of subsets of [0, 1]. Roughly, we
want to define a measure µ on subsets of [0, 1] such that µ((a, b)) = b−a for all 0 ≤ a < b ≤ 1.
We will see later that Kolmogorov ensured (via the so-called Kolmogorov extension theorem)
that µ extends to all Borel sets, which recall is the smallest σ-algebra containing the intervals.

Now let us define a set which is not Borel. Let x ∼ y if x − y ∈ Q. It is not too
hard to check that this is an equivalence relation, which means that we can divide [0, 1] into
equivalence classes. Let N be the set obtained by picking exactly one element from each
equivalence class (this is a non-trivial step, and employs the Axiom of choice). We claim
N cannot be Borel. To prove this, note that for different rationals q, q′, (N + q) mod 1 is
disjoint from N + q′ mod 1 (Exercise: check this.) Also ∪q∈Q,0<q<1(N + q) mod 1 = [0, 1]
(exercise: check this as well). Furthermore, it is not hard to convince yourself that µ((N +q)
mod 1) = µ(N ) for any q since length does not change by translating (this needs a serious
proof, which we will learn later). But this is a contradiction as this would mean

1 = µ([0, 1]) = µ(∪q∈Q,0<q<1(N+q) mod 1) =
∑

q∈Q,0<q<1

µ((N+q) mod 1) =
∑

q∈Q,0<q<1

µ(N ),

which is impossible as either µ(N ) = 0, in which case we get 1 = 0, or µ(N ) > 0 in which
case we get 1 = ∞.

Consequently, µ(N ) is undefinable. On the other hand µ(A) is a real number for every
Borel set A. Consequently N cannot be Borel.

We now state and prove a useful lemma about the ‘continuity’ properties of a measure.
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Lemma 1.15. • If A1 ⊆ A2 ⊆ . . . be a sequence of measurable sets (sometimes called
an increasing sequence), then µ(∪∞

n=1An) = limn→∞ µ(An) (in particular the limit
exists). This is sometimes called continuity of the measure from below. 3

• If A1 ⊇ A2 ⊇ . . . be a sequence of measurable sets, with µ(A1) < ∞. Then µ(∩n≥1An) =
limn→∞ µ(An) (in particular the limit exists). This is sometimes called continuity of
the measure from above. 4.

• (Subadditivity/ Union bound) Show that for any sequence {An}n≥1 of measurable sets
(not necessarily disjoint)

µ(∪n≥1An) ≤
∞∑
n=1

µ(An) (1.1)

Proof. For the first part, we use a standard trick called disjointification. To that end, define
Bn = An \ (A1 ∪ A2 ∪ . . . ∪ An−1). Notice Bn ⊂ An and Bn ∩ Ai = ∅ for all 1 ≤ i ≤ n − 1.
Therefore, the collection {Bn}n≥1 are mutually disjoint that is Bi ∩ Bj = ∅ for all i ̸= j.
Also note

∪n
k=1Bk = ∪n

k=1Ak

Since Ak is increasing, that is, Ak ⊆ Ak+1, we have

∪n
k=1Ak = An

In particular,
An ↑ ∪∞

k=1Ak = ∪∞
k=1Bk

Thus using the additivity property of measures

µ(An)
Ak increasing

= µ(∪n
k=1Ak) = µ(∪n

k=1Bk)
additivity

=
n∑

k=1

µ(Bk)

Since µ of any set is non-negative,
∑n

k=1 µ(Bk) is nondecreasing in n and in particular, the
limit as n → ∞ exists. Therefore, the limit of µ(An) also exists and

lim
n→∞

µ(An) = lim
n→∞

n∑
k=1

µ(Bk) =
∞∑
k=1

µ(Bk)
countable additivity

= µ(∪∞
k=1Bk) = µ(∪∞

k=1Ak)

Note that both sides could be ∞ in this equation. Indeed, we will see later that this can
indeed be the case if µ(Ω) = ∞. 5

3Can both sides of the equation be ∞?
4We need the assumption µ(A1) < ∞, look at the example below
5For example, special and very important measure called ‘Lebesgue measure’ λ(Section 1.4) which ba-

sically measures length. For now it will be enough to know that for any interval, λ((a, b)) = b − a for any
interval (a, b) ⊂ R (including the case a = −∞ or b = ∞). Note that

∞ = λ((0,∞)) = λ(∪∞
n=1(0, n))

first part of lemma
= lim

n→∞
λ((0, n)) = lim

n→∞
n = ∞
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For the second part, define Ci = A1 \ Ai. Since A1 ⊇ A2 . . . , we have C1 ⊆ C2 ⊆ . . . .
Thus by previous part,

lim
n→∞

µ(A1 \ An) = lim
n→∞

µ(Cn) = µ(∪i≥1Ci) = µ(A1 \ (∩i≥1Ai))

By Exercise 1.11, we have

lim
n→∞

(µ(A1)− µ(An)) = µ(A1)− µ(∩i≥1Ai).

(Note here we crucially used µ(A1) < ∞). Cancelling µ(A1), we are done.
6

The third item is left as an exercise.

1.3 Random variables

Definition 1.4 (Random variable). Let (Ω,F) be a measurable space. A random variable
is a function X : Ω 7→ R such that for any open interval I,

X−1(I) := {ω ∈ Ω : X(ω) ∈ I} ∈ F .

Lemma 1.16. If X is a random variable, then X−1(B) ∈ F for any Borel set B.

Proof. One can show this fact using the following standard (and very useful!) technique
in measure theory. Let B̃ = {A ⊂ R : X−1(A) ∈ F}. Clearly B̃ contains all the open
intervals. Now we wish to argue that B̃ is a σ-algebra. If we can do that, then this finishes
the argument since B(R) is the smallest σ-algebra containing the open intervals which in
turn implicates B̃ ⊃ B(R), as desired.

Now we finish this argument, i.e., show B̃ is a σ-algebra. To that end, we need to verify
the following.

• Clearly R ∈ B̃ as Ω = X−1(R).

• If A ∈ B̃ then X−1(A) ∈ F which implies X−1(Ac) = X−1(R) \X−1(A) ∈ F̃ as well.
Thus Ac ∈ B̃.

• If {An}n≥1 is a countable collection in B̃, then X−1(∪n≥1An) = ∪n≥1X
−1(An)

7 ∈ F as
well. Thus ∪n≥1An ∈ B̃.

This completes the proof

6The assumption µ(A1) < ∞ is important. Indeed, if we take An = (n,∞) and λ to be Lebesgue measure
(yet to be defined), then λ(∩∞

n=1An) = λ(∅) = 0 by the first property of measures. On the other hand
limn→∞ λ((n,∞)) = limn→∞ ∞ = ∞. Thus in this case, the second part of the lemma is false.

7verify!
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Definition 1.5. We denote by σ(X) the smallest σ-algebra which makes X measurable. In
other words,

σ(X) = ∩{F : F is a σ-algebra, X−1(E) ∈ F for all E ∈ B(R)}.

In other words,
σ(X) = σ({X−1((−∞, x]), x ∈ R}).

Exercise 1.17. Prove that

σ(X) = {X−1(A) : A ∈ B(R)}.

Hint: Use the same technique as in Lemma 1.16.

Example 1.18 (Modelling a coin toss). Assume F = (∅,Ω). Consider X : Ω 7→ R so that
X(ω) = 1 if ω ∈ A and X(ω) = 0 if ω ∈ Ac. Then X is NOT a (F - B(R)) random variable,
since X−1({1}) = A /∈ F .

However if we make F = (∅, A,Ac,Ω) then X becomes a random variable. Indeed, for
any U ∈ B

X−1(U) =


∅ if 1 /∈ U and 0 /∈ U

A if 1 ∈ U and 0 /∈ U

Ac if 1 /∈ U and 0 ∈ U

Ω if 1 ∈ U and 0 ∈ U.

(1.2)

all of which are in B. In fact σ(X) = F in this case.

Example 1.19 (Modelling a discrete random variable). Let S = {s1, s2, . . .} be a countable
subset of R. Let p : S → R is a function such that

∑
x∈S px = 1. Let Fi =

∑
j≤i psj with

F0 = 0. Define Ai = [Fi, Fi + psi+1
). Note that Ai forms a partition of [0, 1].

Now let us construct a random variable with pmf p. Define X : [0, 1] → R to be the
following piecewise constant function: Xt = si+1 in [Fi, Fi + psi+1

) for i ≥ 0. With this
definition it is not too hard to see that

σ(X) = {B : B := ∪j∈S⊆NAj}.

Indeed X−1({si+1}) = Ai for all i ≥ 0. Thus all the sets of the form ∪j∈S⊆NAj must be in
σ(X). Furthermore, σ(X) is a σ-algebra as we already saw in Example 1.3.

Now let us show that the space of random variables is closed under arithmetic operations.
To that end, let X, Y be random variables defined on (Ω,F). Then

• X + Y is a random variable. To see this note that it is enough to show that for all
x ∈ R

{X + Y ≤ x} ∈ F

11



which is equivalent to showing

{X + Y ≤ x}c = {X + Y > x} ∈ F

which is equivalent to showing

∪r∈Q{X > r} ∩ {Y > x− r}

where Q is the set of rationals. The last statement is clear from definition.

• X − Y is a random variable. (Similar proof, exercise)

• X2 is a random variable. To see this, note that

{ω : X2(ω) > x} =

{
Ω if x < 0

X ∈ {
√
x,∞} ∪ (−∞,−

√
x) if x > 0.

both of which is in F .

• cX is a random variable where c ∈ R. This is easy, left as exercise.

• XY is a random variable. To see this write

4XY = (X + Y )2 − (X − Y )2

and appeal to the previous items.

• |X| is a random variable. To see this we introduce a very important random variable
called indicator random variable. For any A ∈ F , define

1A(ω) =

{
1 if ω ∈ A

0 if ω /∈ A.
(1.3)

Now note
|X| = X1{ω:X(ω)>0} −X1{ω:X(ω)<0}

and appeal to the previous items.

• max{X, Y } is a random variable. To see this, note

max{X, Y } =
|X + Y |+ |X − Y |

2

and appeal to the previous items.

• min{X, Y } is a random variable. (Exercise).

• max{X1, . . . , Xn} is a random variable and min{X1, . . . , Xn} is a random variable.
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Terminology: Whenever we write a relation between random variables without specifying
anything else, we mean it is valid “pointwise” which is an euphemism for saying that it is
valid for “all ω”. For example, X ≤ Y means that X(ω) ≤ Y (ω) for all ω ∈ Ω. It is
usually the case that probabilists do not care for sets of measure 0 (although there are very
good reasons in other branches of mathematics to care about them!), and are happy for a
relation to be valid “up to measure 0 sets”. Usually this is denoted by X ≤ Y a.e. or
a.s. (almost everywhere or almost surely). For example “X ≤ Y a.s.” means that if
Ω0 = {ω ∈ Ω : X(ω) > Y (ω)} then µ(Ω0) = 0.

Let us try to generalize the above. Sometimes, a random variable is also used to denote
arbitrary maps X : Ω1 7→ Ω2. In that case, we need to specify two measurable spaces
(Ω1,F1) and (Ω2,F2) and it must be the case that for all A ∈ F2, X

−1(A) ∈ F1. In that
case, sometimes we specify X is F1-F2 measurable to make sure there is no confusion
with the σ-algebras involved. Usually in this course, (Ω2,F2) will be (R,B) (or at the most
(Rn,B(Rn))).

We assume (Ω2,F2) is (R,B) if nothing else is specified.

Fact: (Obvious) If F1 ⊂ F2, then if X is F1 - B measurable then X is F2 - B measurable.
If F1,F2 are both R, then we shall usually denote the random variables using small letters
like f, g just like we did in Calculus. We need a slightly general definition of real valued
measurable functions.

Definition 1.6. Suppose I, J ⊂ R are intervals (open or closed). A function g : I 7→ J is
B(I)-B(J) measurable if for all A ∈ B(J), {x : g(x) ∈ A} ∈ B(I). Again, this is equivalent
to saying that

{x : g(x) < t} ∈ B(I), ∀t ∈ J.

Lemma 1.20. Let (Ω,F ,P) be a probability space. Let f : R 7→ R be B(R)-B(R) measurable.
Let X be a random variable. Then f(X) is a random variable.

Proof. This simply follows from definition. Let Y = f(X). For any A ∈ B(R), Y −1(A) =
X−1(f−1(A)). Since A is Borel, f−1(A) is Borel and X−1(f−1(A)) is also Borel as X is a
random variable.

Recall that a set U in R is open if for any x ∈ U , there exists an interval x ∈ (a, b) ⊆ U .

Lemma 1.21. Any open set in R is measurable.

Proof. This follows from the fact that the topology in R has a countable base. In fact, one
can look at

G := {(r − q, r + q) : q ∈ Q, q > 0, r ∈ Q}.
Any open set can be written as union of elements in G8. Since G is countable, any open set
is measurable.

8If this is unknown to you, you can assume this, or look it up in the internet if you are curious, we won’t
need to go much in this direction.
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Lemma 1.22. Let f : R 7→ R be a continuous function. Then f is B(R)-B(R) measurable.

Proof. By the definition of continuity f−1((a, b)) is an open set. Since an open set in R is
measurable by Lemma 1.21, we are done.

Combining Lemmas 1.20 and 1.22, we conclude that ifX is a random variable, sin(X), eX , log(|X|)
etc. In particular,

Lemma 1.23. If X is measurable and g : R 7→ R is Borel measurable, then any measurable
function g, g(X) is a random variable.

1.4 Existence of measures

Now that we have defined the Borel sets, we want to define measures defined on Borel sets,
which satisfies the conditions of Definition 1.3.

Let us start with a prototypical example, Ω = R and µ is a measure which measures
“length”. Such a measure should satisfy µ((a, b)) = b − a for all −∞ < a < b < ∞. But
how do we know that any such measure on R exists which satisfies µ((a, b)) = b − a for all
−∞ < a < b < ∞?

Exercise 1.24. Thought experiment: try to construct such a measure directly. Firstly try to
define this for “unions of finite intervals” (easy), then to countable unions and intersections
(moderate), and then extend this to all Borel sets (*hard*, we will not try to do this in this
course).

Indeed, the whole structure of probability theory is built upon the existence of such
measures. We will now state two theorems, which as you can imagine are fundamental to
everything that follows. Due to lack of time, we will not prove the theorems, but take the
theorems as a black box and move on. To introduce the two theorems, we need two additional
definitions.

Definition 1.7. Let A be a collection of subsets of Ω.

• (ring) We say A is a ring if (i) A,B ∈ A =⇒ A∪B ∈ A, (ii) A,B ∈ A =⇒ B \A ∈
A.

• (π-system) We say A is a π-system if A,B ∈ A =⇒ A∩B ∈ A. (e.g. The collection
of all open intervals of R.)

Note that a ring must necessarily contain the emptyset. For example, let A is the collection
of all subsets of R which are finite unions of intervals of the form (a, b] for a, b ∈ R. That is,

A := {∪n
j=1(aj, bj] : −∞ < a1 ≤ b1 ≤ a2 ≤ b2 ≤ . . . ≤ bn < ∞} ∪ {∅}. (1.4)

Exercise 1.25. Verify that the example A above satisfy the conditions of a ring and a
π-system respectively.
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Exercise 1.26. Let P = {(a, b) : −∞ < a < b < ∞}. Prove that P is a π-system.

The point is that both a ring and a π-system are subcollections of much less complexity
than a σ-algebra. In particular, starting with a desirable definition of measure on such
structures are potentially much easier. This motivates the following definition

Definition 1.8 (Pre-measure). Let A be a ring. We say µ : A 7→ [0,∞) is a pre-measure
if µ(∅) = 0 and for any countable collection of disjoint elements {An}n≥1 of A such that
∪n≥1An is in A,

µ(
∞⋃
n=1

An) =
∞∑
n=1

µ(An).

Theorem 1.1 (Carathéodory extension theorem). Let A be a ring over a sample space Ω
and let µ be a pre-measure on A. Then there exists a σ-algebra F containing A such that µ
extends to a measure on F .

Figure 2: Constantin Carathéodory (1873-1950)

Here by “extends”, we mean that there exists a measure on µ̃ on F such that for any
A ∈ A, µ̃(A) = µ(A).

Example 1.27. Take A to be the ring of the collection of finite union of intervals of the
form (a, b]. In other words,

A := {∪n
j=1(aj, bj] : −∞ < a1 ≤ b1 ≤ a2 ≤ b2 ≤ . . . ≤ bn < ∞}. (1.5)

Define

µ(∪n
j=1(aj, bj]) =

n∑
j=1

(bj − aj)

Lemma 1.28. The function µ on A defined above is a pre-measure.
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Proof. Take a countable collection (An)n≥1 in A. Since the union of An is in A we can write
A := ∪n≥1An = ∪k

j=1Ij where Ij are disjoint intervals of the form (a, b]. The crucial point
here is that even though A is a countably infinite union of An, it is assumed to be in A so
we can actually write it as a finite union of intervals.

Since Ans are disjoint and each An is in A, we can also write ∪n≥1An as a disjoint union
of countably many intervals J := {Jn : n ∈ N}. (Finitely many coming from each An and
they are all disjoint.) Note that ∑

n≥1

µ(An) =
∑
n≥1

µ(Jn)

since we can rearrange the terms in the infinite series as everything is non-negative. Therefore
we need to show ∑

n≥1

µ(Jn) = µ(A) =
k∑

j=1

µ(Ij) (1.6)

To prove (1.6), we make the following claim:

Claim 1.29. Let Uj be the set of indices n such that Jn intersects Ij for 1 ≤ j ≤ k.

• {Uj}1≤j≤k are disjoint and ∪k
j=1Uj = N. In other words, {Uj}1≤j≤k forms a partition

of N.

• ∪n∈Uj
Jj = Ij

Let us prove the lemma assuming Claim 1.29. Since the series
∑

n≥1 µ(Jn) consists of
nonnegative terms, we can rearrange the terms without changing the value of the series.
Thus writing ∑

n≥1

µ(Jn) =
k∑

j=1

∑
n∈Uj

µ(Jn)

Arrange the intervals with index in Uj in order, call them (a1, b1], (a2, b2], . . .. Note that
a2 = b1 as otherwise one can pick an element in (a2, b1) which is not in ∪n≥1An but is in
∪k

j=1Ij. Hence ∑
n∈Uj

µ(Jn) = µ(Ij).

which completes the proof.

Proof of Claim 1.29. Let U1 be indices n such that Jn which intersect I1. Since A is equal
to ∪k

j=1Ij, it must be the case that ∪n∈U1Jn = I1. Indeed, suppose that an interval L with
index in U1 contains an element outside I1. Since L is an interval, it must contain a point
arbitrarily close to I1 but outside I1. Then it must contain an element outside ∪k

j=1Ij since
the intervals Ij are disjoint. But this is impossible. Thus all the intervals with index in U1

must be contained in I1. Their union must be I1 as well as otherwise ∪n≥1An = ∪k
j=1Ij is

false.
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Applying the same reasoning for each Iℓ for 1 ≤ ℓ ≤ k, we see that we can similarly
define Uℓ for 1 < ℓ ≤ k. Also ∪1≤ℓ≤kUℓ = N since each interval Jn must intersect some Ij.
Thus ∑

n≥1

µ(Jn) =
∑

1≤ℓ≤k

µ(I1) = µ(A).

Thus (1.6) is established, and hence µ is a pre-measure.

By Theorem 1.1, we immediately get that µ extends to a measure on B(R). However,
the next thing we need to make sure is that there can be only one such extentsion. This is
provided by the following theorem. Recall the definition of a π-system from Definition 1.7.

Theorem 1.2. Let (Ω,F) be a measure space and let P ⊂ F be a π-system with Ω ∈ P and
σ(P) = F . Suppose there are two measures on F such that

• µ1(A) = µ2(A) for all A ∈ P

• There exists a sequence {Ωn}n≥1 with Ωn ∈ P for all n and Ωn ↑ Ω as n → ∞ with
µ1(Ωn) < ∞ for all n. Then µ1 and µ2 are equal as measures (i.e. µ1(E) = µ2(E) for
all E ∈ F .)

Let us come back to Example 1.27. Take Ω = R and F = B(R) (Borel Sets). Take P to
be the set of all open intervals of R. You have already verified in Exercise 1.26 that P is a
π-system. Now we verify that µ defined in Example 1.27 has a unique extension to a measure
in (R,B(R)) by applying Theorem 1.2. That is, suppose that there are two measures µ1, µ2

with µ1((a, b)) = µ2((a, b)) = b − a for all open interval (a, b) ⊂ R. All we need to find is
a sequence Ωn ∈ P with µ1(Ωn) < ∞ for all n with Ωn ↑ Ω. Simply take Ωn = (−n, n)
which clearly satisfies the two conditions. We conclude that µ1 is equal to µ2. This unique
extension is called a Lebesgue measure on R.

Example 1.30. Take your favourite function f : R 7→ [0,∞) such that
∫
R f(x)dx = 1. Let

A be as in (1.5) and let

µ̃f (∪n
j=1(aj, bj]) =

n∑
j=1

∫ bj

aj

f(u)du.

Using simple properties of integrals, we can check that µf is a pre-measure. Thus µ̃f extends
to a unique measure µf on B(R) using Theorem 1.1 and Theorem 1.2 as before. This measure
corresponds to a probability measure with density f .

Distribution of random variables One can take Example 1.27 quite a bit further. Recall
the definition of a cumulative distribution function (cdf) from Math 352/ Stat 350: for any
random variable X defined on a probability space (Ω,F ,P)9, the cdf FX can be taken to be

FX(t) = P(X ≤ t). (1.7)

9It does not matter what we take this probability space to be. For example we can take Ω = [0, 1], F to
be the Borel sets and P to be the Lebesgue measure restricted to subsets of [0, 1] if we like.
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Take A to be the ring in Equation (1.5) and for any A = ∪n
i=1(ai, bi) ∈ A

µX(A) =
n∑

j=1

(FX(bj)− FX(aj))

Exercise 1.31. Show that the µX defined above is a pre-measure.

Using Theorem 1.1, we get that µX extends to a measure on all Borel sets.

Exercise 1.32. Using Theorem 1.2 show that µX extends to a unique measure on Borel
sets.

Once we have verified this extension is unique, this is called the measure corresponding
to the random variable X. The following exercise is the reason behind such nomenclature

Exercise 1.33. Show that for any Borel set A ⊂ R, µX(A) = P(X ∈ A) (µX is as defined
above). Hint: Start by showing this for A and then extend to every element in B(R) using
the trick in the proof of Lemma 1.16, or Theorem 1.2.

Definition 1.9. Suppose (Ω,F ,P) is a probability space. Distribution of a random variable
X is the probability measure µX defined on (R,B) defined by

µX(A) = P(X ∈ A) = P(ω : X(ω) ∈ A) = P(X−1(A)); ∀A ∈ B.

Maybe it is not too hard to convince oneself that in general doing explicit computations
with µX might be quite cumbersome. Also the description of µX is, unless we are in the
trivial finite valued random variable case, somewhat explicit: take the unique extension of
a set function satisfying certain properties. Perhaps a more practical representation of a
probability measure on R is through a function called cumulative distribution function, or
cdf.

Definition 1.10. The cumulative distribution function is a function F : R → R
corresponding to a probability measure µ : R 7→ R is given by,

F (t) = µ((−∞, t]), ∀t ∈ R.

Exercise 1.34. Let F be a cumulative distribution function.

• F ∈ [0, 1]

• F (t) is non-decreasing in t

• F is a right-continuous function. Also the left limit exist at all t, i.e.,

lim
u→t−

F (u)

exists.
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• µX({a}) = F (a)− F (a−) for all a ∈ R.

Note that Definition 1.10 did not involve any random variable. But actually, we can recover
the cumulative distribution function, which you learned in an introductory prob/ Stat course
corresponding to a random variable via the following lemma. The proof is obvious from
definition.

Lemma 1.35. The cumulative distribution function FX corresponding to a random
variable defined in (1.7) satisfies

FX(t) = µX((−∞, t]), ∀t ∈ R.

where µX is defined as above.

Let us finish this section which tells us that random variables, cdfs and probability
measures on R are in one to one correspondence to one another.

Firstly, given a probability measure µ on R, we can define a cdf F (t) = µ((−∞, t]), t ∈ R
and given a cdf F we can define for any A = ∪n

i=1(ai, bi) ∈ A

µ(A) =
n∑

j=1

(F (bj)− F (aj))

The same argument as in Exercise 1.31 tells us that µ can be extended to a probability
measure on R which clearly corresponds to the cdf F in the sense that µ((−∞, t]) = F (t).
Thus we have established a one to one correspondence between cdfs and probability measures
on R.

Now let us prove a similar correspondence between probability measures on R and random
variables. Clearly given any random variable, we have a unique measure µX such that
P(X ∈ A) = µX(A) for all Borel A. We now prove the converse.

Proposition 1.36. Suppose µ : B(R) 7→ [0, 1] is a probability measure. There exists a
random variable X defined on ([0, 1],B([0, 1]), λ|[0,1]) where λ |[0,1] is the restriction of the
Lebesgue measure on [0, 1] such that

µX(A) = P (X ∈ A) = µ(A), ∀A ∈ B(R).

Proof. We straightaway construct the random variables by hand as follows. Take the prob-
ability space to be ([0, 1],B([0, 1]), λ|[0,1]) where λ |[0,1] is the restriction of the Lebesgue
measure on [0, 1] as usual. Let us write this λ to shorten notation. Let us first construct a
random variable U such that µU = λ. This is easy, define U(x) = x for all x ∈ [0, 1]. Then

µU(a, b) = λ(ω : U(ω) ∈ (a, b)) = λ((a, b)) = b− a.

Clearly this means (by the uniqueness theorem)

µU = λ.

19



Now let us move on to the general case. Take the cdf F corresponding to the probability
measure µ given by

F (t) = µ((−∞, t]), t ∈ R.

The idea now is to define ‘G = F−1’. If F is not strictly increasing, this definition does not
make sense. However let us assume F is strictly monotonic for the moment. Then define
X = G(U). Note that

P(X ≤ t) = P(G(U) ≤ t) = P(U ≤ G−1(t)) = P(U ≤ F (t)) = F (t)

For general F , the idea is the same but we need to define G more carefully, which is as
follows: Define G : [0, 1] 7→ R defined by

G(p) = inf{x : F (x) ≥ p}.

(This is a kind of inverse, sometimes called “right inverse” and matches with the inverse
function if F is actually injective).

Claim. For every q ∈ [0, 1], {r ∈ R : F (r) ≥ q} = {r : G(q) ≤ r} .
Given the claim, the proof is complete as we simply take

X = G(U).

Then
µX((−∞, r]) = λ(G(U) ≤ r) = λ(U ≤ F (r)) = λ((0, F (r)]) = F (r).

Now we can prove the claim by hand. Take r in the left hand side so that F (r) ≥ q.
Then{x : F (x) ≥ q} ⊂ [r,∞). By definition G(q) is the infimum of {x : F (x) ≥ q}, and thus
G(q) ≥ r and we conclude r is on the right hand side.

On the other hand, take r from the right hand side so that G(q) ≤ r. Now if by
contradiction F (r) < q then by right continuity of F there is an s > r such that F (s) < q.
So {x : F (x) ≥ q} ⊂ (s,∞) so G(q) ≥ s > r a contradiction, so F (r) ≥ q. This completes
the proof.

Definition 1.11. From now on, we shall refer to ([0, 1],B([0, 1]), λ|[0,1]) where λ |[0,1] is the
restriction of the Lebesgue measure to [0, 1] as the standard probability space.

Remark 1.37. One can have two random variables X, Y , defined on different probability
spaces, but still µX = µY . In this case, we say X and Y have the same distribution.

Example 1.38. Let Ω1 = {H,T}, F1 = {∅, {H}, {T},Ω1} and P({H}) = P({T}) = 1
2
. Let

X : Ω1 7→ R be defined as X(H) = 1, X(T ) = 0. Now let Ω2 = [0, 1], F2 = B([0, 1]) and let
λ be the Lebesgue measure on [0, 1]. Now define X(ω) = 1 if ω ∈ [0, 1/2] and X(ω) = 0 if
ω ∈ [1/2, 1]. Then µX = µY which satisfies µX({1}) = µX({0}) = 1

2
. So X and Y have the

same distribution, but they are defined on different probability spaces.
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A random variable can be of different types depending on it’s ‘support’. If there is a
countable set S such that P(X ∈ S) = 1 then the random variable is discrete and its
probability mass function or pmf is defined as p(i) = µX({i}) for all i ∈ S. Note here that
S can be much more complicated than the integers, e.g. S could be the set of rationals. In
the world of measures, we say µX has atoms at S.

On the other hand, if X might have a probability density function pdf fX , so that the
cdf

FX(a) =

∫
fX(t)dt.

Using the arguments above, we know that FX corresponds to a probability measure µX .
Such a random variable is called a continuous random variable. 10

Random variables can be much more complicated. For example, it can be a mixture of
a discrete and a continuous random variables. Take the standard probability space. Let
U(ω) = ω be the identity function on [0, 1]. Define Z = 10 · 1[0,1/2]. Define

X = Z1[0,1/3] + U1[1/2,1].

Spelling it out,

X(ω) =


Z(ω) = 10 if 0 ≤ ω ≤ 1/3

0 if 1/3 < ω < 1/2

U(ω) if 1/2 ≤ ω ≤ 1.

(1.8)

Note that X cannot be We now claim that for any Borel set A,

µX(A) = λ(A ∩ [1/2, 1]) +
1

3
δ{10∈A} +

1

6
δ{0∈A}.

where we interpret δB = 1 if and only if B is true. Let us compute the cdf. Convince yourself
that the cdf is

FX(t) =



0 if t < 0
1
6
if 0 ≤ t < 1/2

1
6
+ (t− 1

2
) if 1/2 ≤ t ≤ 1

1
6
+ 1

2
if 1 ≤ t ≤ 10

1 if t ≥ 10.

Thus FX is continuous at except at 0 and 10 where it has ‘jumps’ of size 1/6 and 1/3 respec-
tively. By the last item of Exercise 1.34, we conclude that µX({0}) = 1/6 and µX({10}) = 1

3
,

so µX has atoms at 0 and 10. Furthermore,

µX((−∞, t]) = FX(t) = (t− 1/2)11/2<t≤1 +
1

6
δ0≤t +

1

3
δ10≤t

= (t− 1/2)11/2<t≤1 +
1

6
δ0≤t +

1

3
δ10≤t

= λ((−∞, t] ∩ [1/2, 1]) +
1

3
δ{10∈(−∞,t]} +

1

6
δ{0∈(−∞,t]}

10Later, we will call the measures corresponding to such random variables absolutely continuous measures.
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Thus the claimed equality is satisfied for sets of the form A = (−∞, t]. Now to extend this
equality to all Borel sets, we employ the same trick as in Lemma 1.16. Define

B = {A : µX(A) = λ(A ∩ [1/2, 1]) +
1

3
δ{10∈A} +

1

6
δ{0∈A}}.

By the argument just before, we conclude all sets of the form (−∞, t] is in B. Of course ∅
is in B as both sides are 0 in this case. Finally we need to show that B is a σ-algebra. We
leave it as a simple exercise to check this. Once we do this, we conclude that B ⊃ B(R) and
therefore our claim is proved.

Note µX cannot have a density function as µX has atoms. Also, µX cannot be discrete
as µX({a}) ̸= 0 if and only if a ∈ {0, 10} and µX({0, 10}) = 1

3
+ 1

6
= 1

2
< 1, so in a sense

‘half’ of its mass is carried by the Uniform variable U which is continuous.

1.5 Some pathological distributions

If a random variable is discrete, is it’s cdf something nice that we can practically plot by
hand? Unfortunately even discrete random variables can have very complicated cdf’s. Take
for example an enumeration of rationals {ri : i ∈ N} and take a probability mass function
p := (pi)i∈N and consider the random variable X with pmf p. The cdf of X will have a
positive jump pi at a dense (but countable) many points in R.

Since the integral of a function is always continuous, the cdf of a continuous random
variable is always continuous. Is the converse true? Unfortunately no. There is a cdf known
as the devil’s staircase whose corresponding random variable has no probability density
function. See this Wiki article. The key insight is that the measure µ corresponding to
this cdf satisfies µ(C) = 1 where C is the cantor set. But you saw in an exercise that the
Lebesgue measure of a Cantor set is 0. We will see in the next section that when we integrate
any function over a Lebesgue measure 0 set, the integral is always 0. Thus there cannot exist
such a density function. We will come back to the devil’s staircase at an opportune time.
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2 Integration

The goal of this subsection is to give a brief outline of construction of Expectation of X,
where X : Ω 7→ R is a measurable random variable on the measure space (Ω,F , µ). There
are various notations for this object that we construct:

E(X) ≡
∫

Xdµ ≡
∫

X(ω)dµ(ω).

They all have the same meaning and is a real number 11. In this sense Expectation
of a random variable and integration of a measurable function also has the same meaning.
Perhaps a probabilist will view the above as expectation more often and integration is how
an analyst will view the above quantity, maybe for a general measure. The above integral
is constructed step by step for functions of increasing complexity, and is very similar to the
construction of a Riemann integral. The difference is that the function (random variable)
which we want to integrate is defined on an abstract space Ω rather than R.

A review of Riemann integral: Let us get back to Riemann integration in R for a
moment, and let us consider a concrete function, say f(x) = x2 in the interval [0, 1). The
way Riemann integral works is of course to break up [0, 1] into intervals [i/n, (i + 1)/n),
0 ≤ i ≤ n− 1. Then consider the function

f∗,n =
n−1∑
i=0

(i/n)21[i/n,(i+1)/n)

which approximates f from below. (Here 1[i/n,(i+1)/n) is the indicator function as defined in

(1.3).) Similarly we can have a function f ∗
n =

∑n−1
i=0 ((i + 1)/n)21[i/n,(i+1)/n) which approxi-

mates f from above. Then we define∫ 1

0

f∗,n =
n−1∑
i=0

(i/n)2
1

n
.

A similar expression can be written for the integral f ∗
n. Then we took a limit as n → ∞ and

called the limit (if it exists, which in most cases does) to be the Riemann integral. Here,
maybe you remember that instead of the word ‘define’, we said ‘clearly this is the case as we
are finding the area under a bunch of rectangles’.

Here, instead of discretizing the x-axis, one can also discretize the y-axis as follows:

fn(x) =
n2n−1∑
k=0

k

2n
1 k

2n
≤f(x)< k+1

2n
(x).

11Sometimes people talk about expectation of a vector X in which case the expectation is a vector obtained
by taking the expectation of each co-ordinate
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and define ∫
fn(x)dx =

n2n−1∑
k=0

k

2n
λ({x : f(x) ∈ [

k

2n
,
k + 1

2n
)})

Clearly, this is a better approach if the domain is not R (recall that the range is always R for
random variables). But we pay the price of changing the axis by having to deal with more
complicated sets of the form {x : f(x) ∈ [ k

2n
, k+1

2n
)} = f−1([ k

2n
, k+1

2n
)).

In what follows, we make the setup more abstract:

• We replace [0, 1] by Ω.

• We replace intervals by Borel sets.

• There is no nice way to find an approximation from above or below, so we need to do
something more abstract.

2.1 Construction of Lebesgue integral:

We assume that we have a probability space (Ω,F , µ) given to us. All our random variables
are defined on the same space.

• Step 1. Let X be a simple function, i.e., a function of the form X =
∑k

i=1 ai1X∈Ai
.

Exercise 2.1. If X is a simple function, we can write X =
∑k

i=1 bi1Bi
where Bi s are

disjoint.

Now take a representation of X of the form X =
∑k

i=1 bi1Bi
where Bi s are disjoint

and define

E(X) =
k∑

i=1

biµ(Bi).

We say a simple function X is integrable if µ(Bi) < ∞ for all i. Note that if µ is a
probability measure, every simple function is integrable.

This definition has a slight problem: the representation of X =
∑k

i=1 bi1Bi
might not

be unique. For example:

2 · 1(0,1/2) + 2 · 1[1/2,3/4) + 3 · 1[3/4,1) = 2 · 1(0,3/4) + 3 · 1[3/4,1].

We need to show that the above definition is well defined, that is,

Lemma 2.2. If X =
∑k

i=1 bi1Bi
=

∑ℓ
j=1 cj1Cj

are two different representations of X
(but some Bi might intersect Cj) then

k∑
i=1

biµ(Bi) =
ℓ∑

j=1

cjµ(Cj).

24



Proof. Note that if Bi ∩ Cj ̸= ∅ for some i ̸= j then bi = cj. Therefore in this case we
can write

k∑
i=1

ℓ∑
j=1

bi1Bi∩Cj
=

k∑
i=1

ℓ∑
j=1

cj1Bi∩Cj
.

Thus, taking expectation of both sides,

k∑
i=1

ℓ∑
j=1

biµ(Bi ∩ Cj) =
k∑

i=1

biµ(Bi)

and exchanging summation

k∑
i=1

ℓ∑
j=1

cjµ(Bi ∩ Cj) =
ℓ∑

j=1

k∑
i=1

cjµ(Bi ∩ Cj) =
ℓ∑

j=1

cjµ(Cj).

Lemma 2.3. Suppose X, Y be simple integrable functions.

a. If X ≥ 0 a.s. then E(X) ≥ 0.

b. If a ∈ R, then E(aX + Y ) = cE(X) + E(Y ).

c. If X ≤ Y a.s. then E(X) ≤ E(Y ).

Proof. Suppose X =
∑k

i=1 ci1Ei
. Since X ≥ 0 a.s., if ci < 0 for some i then P(Ei) = 0.

Therefore E(X) =
∑k

i=1 ciP(Ei) ≥ 0.

Next, if X =
∑k

i=1 ci1Ei
and Y =

∑ℓ
i=1 di1Fi

, then

aX + Y =
k∑

i=1

aci1Ei
+

ℓ∑
i=1

di1Fi
=

k∑
i=1

l∑
j=1

(aci + dj)1Ei∩Fj

. Thus

E(cX + Y ) =
k∑

i=1

l∑
j=1

(aci + dj)µ(Ei ∩ Fj)

=
k∑

i=1

l∑
j=1

aciµ(Ei ∩ Fj) +
k∑

i=1

l∑
j=1

djµ(Ei ∩ Fj)

=
k∑

i=1

aciµ(Ei) +
l∑

j=1

djµ(Fj)

= aE(X) + E(Y )
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For the final item, note X − Y ≥ 0 a.s. and by the first item, E(X − Y ) ≥ 0 and by
the second item, E(X − Y ) = E(X)−E(Y ). Combining the two information, we have
E(X) ≥ E(Y ).

• Step 2. Now assume X ≥ 0 but not necessarily simple. Define

E(X) = sup{E(Z) : Z ≤ X,Z is simple and integrable}. (2.1)

The above quantity is allowed to be infinite. To clarify, Z ≤ X means that Z(ω) ≤
X(ω) for all ω. The detail missing here is to show that for simple functions this
definition matches with step 1. To that end it is enough to show that if Z ≤ Z ′ and
Z,Z ′ are both simple integrable, then E(Z) ≤ E(Z ′) for the previous definition. This
is the last item of Lemma 2.3.

Digression. Before moving into step 3, we prove a quick Lemma which should make
the second step above slightly less abstract.

Lemma 2.4. Given any X ≥ 0, there exists a (rather explicit) sequence of simple
random variables Xn such that for every ω ∈ Ω, Xn(ω) ↑ X(ω).

Proof. Let

Bn,k =

{
ω ∈ Ω :

k

2n
≤ X(ω) <

k + 1

2n

}
; 0 ≤ k < n · 2n.

Note changing from n to n+ 1 breaks up the intervals as

[
k

2n
,
k + 1

2n
) = [

2k

2n+1
,
2k + 1

2n+1
) ∪ [

2k + 1

2n+1
,
2k + 2

2n+1
).

for each k. Thus Bn,k = Bn+1,2k ∪Bn+1,2k+1. Define

Xn(ω) =
n2n−1∑
k=0

k

2n
1Bn,k

(ω).

Thus on Bn,k, Xn(ω) =
k
2n

≤ Xn+1(ω). Thus Xn(ω) increases in n for every ω. Thus
supn Xn(ω) = limn→∞Xn.

Also, for every ω ,

Xn(ω) ≤ X(ω) (easy to check!) =⇒ sup
n

Xn(ω) ≤ X(ω).

Also

Xn(ω) ≥ X1X≤n −
1

2n
=⇒ lim infXn(ω) ≥ lim inf

n
(X1X≤n −

1

2n
) = X(ω).

Consequently,
lim
n→∞

Xn(ω) = X(ω).
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Thought experiment. Does this construction imply E(Xn) ↑ E(X). (It is ok if you
find it hard to justify it. It is not OK if you think this is “obvious” (unless you are
confident in analysis).)

• Step 3. Back to construction of Expectation. For general random variables, decompose
X(ω) = X+(ω)−X−(ω) for ω ∈ Ω where X+ = max(X, 0) and X− = −min(X, 0). If
either E(X+) < ∞ or E(X−) < ∞, define

E(X) = E(X+)− E(X−). (2.2)

We say expectation of X is undefined if both E(X+) = E(X−) = ∞. Note here that
E(X) could by ∞ or −∞ and we do not say expectation is undefined if either of this
occurs. It is easy to check that this definition matches the definition in step 2. That
is, if X ≥ 0 then E(X+) = E(X) and similarly for X−.

This completes the construction of Expectation.

Notation: When µ is the Lebesgue measure, sometimes dµ(x) is shortened to dx.12

Example 2.5. Let X be a Cauchy random variable, i.e., for any A ⊂ R,

P(X ∈ A) =

∫
A

2

π(1 + x2)
dx

We will show that E(X+) = E(X−) = ∞ in Section 2.3. In other words, Expectation of X
is not well-defined.

To summarize, we say Expectation of X exists if and only if one of E(X+) or E(X−) is
finite. On the other hand, we sayX is integrable or in L1 if E(|X|) = E(X+)+E(X−) < ∞.

Next, we state a proposition which says that the nice properties which we expect in an
integral is well maintained.

Proposition 2.6. Suppose X, Y, (Xn)n≥1 are measurable defined on a measure space with a
σ-finite measure µ and expectation E(Z) =

∫
Zdµ. Then

a. If X ≤ Y and E(X), E(Y ) are well defined, then E(X) ≤ E(Y ).

b. (Weak monotone convergence) If Xn ≥ 0 a.s. and Xn ↑ X, then E(Xn) ↑ E(X).

c. (Linearity of expectation)If X, Y ≥ 0 a.s. and a > 0 then

E(aX + Y ) = aE(X) + E(Y ).

Proof of Part a. If X ≥ 0 then E(X) ≤ E(Y ) is obvious as the supremum in the definition
(2.1) is taken over a larger set. Similarly for general measurable X ≤ Y , X+ ≥ Y + and
X− ≤ Y −, and therefore using the definition (2.2), the result follows.

12which matches the notation of elementary integration learnt in Calculus I
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Proof of Part b. Note that since Xn is non-decreasing a.s., E(Xn) is non-decreasing and
upper bounded by E(X) by item a. Therefore

lim
n→∞

E(Xn) = sup
n

E(Xn) ≤ E(X).

We now concentrate on proving the reverse inequality. First assume E(X) < ∞. Take a
simple function Z =

∑k
i=1 ci1Ei

with Z ≤ X. Fix δ > 0 and let ε = δ
E(Z)

. Let

Ei,n = Ei ∩ {Xn ≥ ci(1− ε)}.

Notice that since Z ≤ X, Ei,n ↑ Ei. Also note

Xn ≥
k∑

i=1

(ci(1− ε))1Ei,n

so by part a.

E(Xn) ≥ E(
k∑

i=1

(ci(1− ε))1Ei,n
)

=
k∑

i=1

ciP(Ei,n)− ε
k∑

i=1

ciµ(Ei,n).

Notice by continuity of measures limn µ(Ei,n) = µ(Ei). Thus

lim
n

E(Xn) ≥
k∑

i=1

ciµ(Ei)− ε
k∑

i=1

ciµ(Ei)

= E(Z)− δ by choice of ε.

Notice now that since Z ≤ X was arbitrary and simple,

lim
n

E(Xn) ≥ sup
Z simple ,Z≤X

E(Z)− δ = E(X)− δ.

We are done since δ was arbitrary.
If E(X) = ∞, the proof follows similar lines and we define Z =

∑k
i=1 ci1Ei

be a simple
function such that Z ≤ X as before. Let

Ei,n = Ei ∩ {Xn ≥ ci/2}.

Note Ei,n ↑ Ei, again as before. Thus

lim
n

E(Xn) = lim inf
n

Xn ≥ lim inf
n

E(
k∑

i=1

(ci/2)1Ei,n
)

=
k∑

i=1

ci/2µ(Ei)

=
1

2
E(Z).
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Notice now that since Z ≤ X was arbitrary and simple,

lim
n

E(Xn) ≥
1

2
sup

Z simple ,Z≤X
E(Z) = ∞.

as desired.

Proof of part c. Using Lemma 2.4, find Xn ↑ X and Yn ↑ Y such that Xn ≥ 0 and Yn ≥ 0
are simple functions. Using linearity of expectation of simple functions (Lemma 2.3, item
b.) and weak monotone convergence,

E(aX+Y ) weak mon.
= lim

n→∞
E(aXn+Yn)Lemma 2.3b.

= lim
n→∞

(aE(Xn)+E(Yn)) weak mon.
= aE(X)+E(Y )

2.2 Further properties of Expectation

Definition 2.1 (Almost sure convergence). We say Xn almost surely converges to a random
variable X if we set

Ω0 = {ω ∈ Ω : Xn(ω) converges to X(ω)}

then
P(Ω0) = 1.

We specify that we will liberally use the term almost surely or a.s. to describe events which
have probability measure 1. Here is a few illustrations of the use of this terminology.

• X ≤ Y almost surely means P(Ω0) = 1 where Ω0 = {ω ∈ Ω : X(ω) ≤ Y (ω)}.

• Xn → 5 almost surely means that P(Ω0) = 1 where Ω0 = {ω ∈ Ω : Xn(ω) → 5}.

Lemma 2.7. If Xn converges to X almost surely and g : R 7→ R is a continuous function
then g(Xn) converges to g(X) almost surely.

Proof. Let G = {ω : limn→∞ Xn(ω) = X(ω)}. By definition of a.s. convergence, P(G) = 1.
But by continuity of g, for every ω in G, g(Xn(ω)) → g(X(ω)) (just basic definition of
continuity from real analysis is invoked here). Thus {ω : g(Xn(ω)) → g(X(ω))} ⊃ G.
Therefore

P(ω : g(Xn(ω)) → g(X(ω))) = 1,

as desired.

As a corollary, we can say for example that if Xn → X almost surely, then X2
n → X2

almost surely, or eXn cos(Xn) → eX cos(X) almost surely.

Exercise 2.8. If Xn → 2 almost surely and Yn converges to U almost surely, show that
Xn + Yn converges to 5 + U almost surely.
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We now address the following question:

Question 2.9. If Xn → X, can we always say E(Xn) → E(X) (recall we assumed the
expectations exist at the beginning of the chapter, so this is a nontrivial question)? If not,
when can we assure the convergence of expectations?

The answer unfortunately is no. Here is a working example to keep in mind when going
through the next set of propositions.

Example 2.10. Let Zn be a sequence of random variables defined on the standard prob-
ability space (Definition 1.11) defined as Zn = n1[0,1/n]. Note Zn is a simple function and
E(Zn) = 1. However, for all ω ∈ (0, 1), Zn(ω) → 0 and hence Zn → 0 almost surely as
λ((0, 1)) = 1.

In this subsection, X, Y and {Xn}n≥1 are random variables defined on a σ-finite measure
space (Ω,F , µ). We also assume that their expectations are all well-defined.

Lemma 2.11. Assume X ≥ 0. Then E(X) = 0 if and only if X = 0 almost surely.

Proof. First assume X = 0 almost surely. Let A = {ω : X(ω) = 0}. Since X = 0 almost
surely, P(A) = 1. By Lemma 2.4, we can find a sequence of simple functions 0 ≤ Xn ≤ X
such that Xn(ω) ↑ X(ω) for all ω. Therefore Xn1Ac ↑ X1Ac . Since Xn is a simple function,
we must have a number Kn such that Xn(ω) ≤ Kn for all ω. By weak monotone convergence
theorem (proved above),

0 ≤ E(Xn1Ac) ≤ KnP(Ac) = 0
(taking n → ∞ )

=⇒ E(X1Ac) = 0.

Also by definition X1A = 0 for all ω. Thus E(X1A) = 0. Hence

E(X) = E(X1A) + E(X1Ac) = 0.

For the converse, assume E(X) = 0. Let An = {ω : X(ω) ∈ [0, 1/n)}. Then An ↓ A =
{ω : X(ω) = 0} and Ac

n ↑ Ac. Therefore by continuity of measures, P(An) → P(A) and
P(Ac

n) → P(Ac) as n → ∞. Thus

0 = E(X)
since X ≥ 0

≥ E(X1Ac
n
) ≥ 1

n
P(Ac

n) =⇒ P(Ac
n) = 0

which means P(Ac) = 0 hence P(A) = 1 which implies X = 0 almost surely.

Lemma 2.12. If X ≥ 0 almost surely then E(X) ≥ 0 and E(X) = 0 if and only if X = 0
almost surely.

Proof. Notice that X+(ω) ≥ 0 for all ω. Thus E(X+) ≥ 0. Also X−(ω) ≥ 0 for all ω
and X− = 0 almost surely since X ≥ 0 a.s. Thus E(X−) = 0 by previous part. Hence
E(X) = E(X+)− E(X−) ≥ 0.

Suppose E(X) = 0. This means E(X+) = 0 which implies X+ = 0 a.s. Let Ω+ = {ω :
X+ ̸= 0} and Ω− := {X− ̸= 0}. Also Ω0 := {ω : X(ω) ̸= 0} ⊆ Ω+ ∪ Ω−. We conclude that
P(Ω0) ≤ P(Ω+) + P(Ω−) = 0. Thus X = 0 a.s.

Suppose X = 0 a.s. Note X+ ≥ 0 and {X+ ̸= 0} ⊆ {X ̸= 0}. Thus X+ = 0 a.s. as well.
Thus E(X+) = 0. Similarly E(X−) = 0 as well and we have E(X) = 0.
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Lemma 2.13. If X ≥ Y almost surely, then E(X) ≥ E(Y ). If X = Y almost surely, then
E(X) = E(Y ).

Proof. Consider Z = X−Y and apply the previous item. We leave details as an exercise.

Proposition 2.1 (Monotone convergence theorem or MCT). If 0 ≤ Xn for all n and Xn ↑ X
almost surely, then E(Xn) ↑ E(X).

Proof. Let E = {ω : Xn(ω) ↑ X(ω)}. By definition P(E) = 1. Thus Xn1E = Xn almost
surely and X1E = X almost surely.

E(Xn1E) ↑ E(X1E) by weak monotone convergence theorem.

and
E(Xn1E) = E(Xn); E(X1E) = E(X)

Combining the above two displays, the proof is complete.

Exercise 2.14. What condition in the monotone convergence theorem does Example 2.10
violate?

Proposition 2.2 (Fatou’s lemma). If Xn ≥ 0 almost surely for all n then

E(lim inf
n→∞

Xn) ≤ lim inf
n→∞

E(Xn) (2.3)

Proof. Notice that infk≥n Xk is increasing in n and its limit is lim infnXn. Thus by monotone
convergence theorem,

E(lim inf
n

Xn) = lim
n→∞

E(inf
k≥n

Xk)

However
inf
k≥n

Xk ≤ Xn =⇒ E(inf
k≥n

Xk) ≤ E(Xn).

Consequently,
lim inf

n
E(inf

k≥n
Xk) = lim

n→∞
E(inf

k≥n
Xk) ≤ lim inf

n
E(Xn) (2.4)

But the left hand side is E(lim infn→∞ Xn) which yields (2.3).

Exercise 2.15. Does Fatou’s lemma hold for Example 2.10?

Proposition 2.3 (Dominated convergence theorem or DCT). Suppose Xn → X almost
surely and there exists a random variable Y with E(|Y |) < ∞ such that |Xn| ≤ Y almost
surely, then,

E(Xn) → E(X).
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Proof. We learnt in Lemma 2.12 that changing a random variable on a set of measure zero
does not change its expectation. Therefore, we assume Xn(ω) → X(ω) for all ω ∈ Ω.
Furthermore, |Xn| ≤ Y for all n, so |X| ≤ Y pointwise. Now apply Fatou’s lemma to
Xn+Y and Y −Xn (we can do this since −Y ≤ Xn ≤ Y hence both these random variables
are non-negative) .

lim inf
n→∞

E(Xn + Y ) ≥ E(lim inf
n→∞

(Xn + Y )) = E(X + Y ) =⇒ lim inf
n→∞

E(Xn) ≥ E(X) (2.5)

and

lim inf
n→∞

E(Y −Xn) ≥ E(lim inf
n→∞

(Y −Xn)) = E(Y −X) =⇒ lim inf
n→∞

E(−Xn) ≥ E(−X). (2.6)

This means lim supn→∞ E(Xn) ≤ E(X). Combining with lim infn→∞ E(Xn) ≥ E(X), the
proof is complete.

Exercise 2.16. What condition in the dominated convergence theorem does Example 2.10
violate?

2.3 Special cases and computing Expectations

In this subsection, we show how this theory encompasses the things we learned about random
variables in Math 352/ Stat 350.

Riemann integrable implies Lebesgue integrable: First let us think about Riemann
integration and how it is encompassed by Lebesgue integration. The setup is a measurable
function f : R → R. The measure space on which f is defined is (R,B(R), λ) where λ is the
Lebesgue measure. (If the random variable is defined on R, then we usually replace capital
letters like X, Y by usual small letters like f, g). If we want to integrate f over an interval
[0, 1], Let Ii = [i/n, (i + 1)/n] and f∗,i = inf{f(x) : x ∈ [i/n, (i + 1)/n}. then note that the
approximation

f∗,n =
n−1∑
i=0

f∗,i1[i/n,(i+1)/n)

is an approximation of f from below by simple function, whose limit is the Riemann integral.
By MCT, we can conclude that this limit is also the same as the Lebesgue integral of f over
[0, 1]. It is a good exercise to think about this on your own and convince yourself:

Exercise 2.17. Suppose f is Riemann integrable on an interval [a, b]. Prove that the Rie-
mann integral of f over [a, b] is the same as it’s Lebesgue integral.

Now we can use the Riemann integral calculations from calculus we are used to. For
example, if we want to compute

∫
e−xdx, we simply note that∫ n

0

e−xdx =

∫
e−x1x∈[0,n]dx ↑

∫
e−xdx
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by MCT. On the other hand, since Lebesgue and Riemann integrals coincide,
∫ n

0
e−xdx =

1− e−n. Thus
∫
e−xdx = 1.

Let us introduce some further notations:

• If E is a Borel set then
∫
E
f(x)dµ(x) :=

∫
f1Edµ(x).

• If λ is the lebesgue measure then
∫
f(x)dλ(x) =

∫
R f(x)dx =

∫∞
−∞ f(x)dx.

• If λ is the lebesgue measure and E = (a, b) or (a, b] or [a, b) or [a, b], we write∫
E
f(x)dλ(x) =

∫ b

a
f(x)dx. (The integral is the same for all such E, and is equal

to the Riemann integral).

Let us now consider a general probability measure. Suppose X is defined on an abstract
probability space (Ω,F ,P). The main idea is to translate the expectation in such a space
to the real line where computation and calculus is possible. This is given by the following
change of variable formula.

Theorem 2.18. Suppose g : R 7→ R is measurable and either g(X) ≥ 0 or E(|g(X)|) < ∞.
Then

E(g(X)) =

∫
R
g(y)dµX(y). (2.7)

Furthermore, if µX comes from a density (see Example 1.30), that is,
∫
A
dµX =

∫
A
fx(y)dy

for a pdf fX , then

E(g(X)) =

∫
R
g(y)dµX(y) =

∫ ∞

−∞
g(y)fX(y)dy

Proof. The proof follows essentially the construction of integral in Section 2, by proving (2.7)
for functions of increasing level of complexity. We will write

∫
fdµ in place of expectation

with respect to the measure µX on R to differentiate from expectation with respect to the
measure P on (Ω,F ,P).

Step 1. Step function . Let g(x) = 1A(x) for some Borel A ⊂ R. Then

E(g(X)) = E(1A(X)) = P(X ∈ A) = µX(A) =

∫
A

dµX =

∫
1A(y)dµX(y) =

∫
g(y)dµX(y).

If µX comes from a density fX then using our notations defined before the proposition,

µX(A) =

∫
A

fX(y)dy =

∫
1A(y)fX(y)dy =

∫
g(y)fX(y)dy.
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Step 2. Simple function. Let g(x) =
∑n

m=1 cm1Bm , cm ∈ R and Bms are disjoint and
Borel for all m. Then by linearity of expectation

E(g(X)) = E(
n∑

m=1

cm1Bm(X)) =
n∑

m=1

cmE(1Bm(X))

=
n∑

m=1

cmµX(Bm)

=

∫
g(x)dµX(x).

Step 3. Non-negative function. Suppose g ≥ 0. Then find a sequence of simple
functions 0 ≤ gn ↑ g as in Lemma 2.4. Then by Monotone convergence theorem, E(gn(X)) ↑
E(g(X)) and

∫
gn(y)dµX(y) ↑

∫
g(y)dµX(y). By step 2, E(gn(X)) =

∫
gn(y)dµX(y), which

completes the proof.

Step 4. Integrable functions. If g(X) is integrable, that is, E(|g(X)|) < ∞, we can
write g(X) = (g(X))+ − (g(X))− and continue as in the construction of Lebesgue integral.
This step is left as an exercise.

Now it is easy to see that if µX(A) = 0 then
∫
A
g(y)dµX(y) = 0. This is because the

integral is, by Theorem 2.18,∫
g(y)1y∈AdµX(y) = E(g(X)1{ω:X(ω)∈A}).

But g(X)1{ω:X(ω)∈A} is 0 outside X−1(A) and is non-zero on X−1(A) which has probability
0. Thus g(X)1ω:X(ω)∈A is 0 almost surely, and consequently, it’s expectation is 0. As a
corrolary, we get that for Lebesgue measure λ, if λ(A) = 0 then

∫
A
gdx = 0.

Discrete Random variables Let (Ω,F ,P) be a probability space. A random variable is
discrete if there exists a countable set S ⊂ R such that P(X ∈ S) = 1. The set S is called
the support of X.

How will the measure induced by X, µX behave? For any y ∈ S,

µX({y}) = P(X = y).

So µX is actually the probability mass function (denoted pX there) that we learn in a
first level probability course.

Proposition 2.19. If X is discrete with support S. Let g : R 7→ R is measurable. Then
E(g(X)) =

∑
x∈S g(x)µX({x}).
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Proof. By Theorem 2.18, we have

E(g(X)) =

∫
g(y)dµX(y).

Therefore to prove the formula, we need to show that
∫
g(y)dµX(y) =

∑
x∈S g(x)µX({x}).

The proof of this follows similar steps as in the proof of Theorem 2.18. In the first step,
assume g = 1A for some Borel A. Then note:∫

g(y)dµX(y) =

∫
1A(y)dµX(y) = µX(A) =

∑
x∈A

µX({x}) =
∑
x∈S

1A(x)µX({x}) =
∑
x∈S

g(x)µX({x}).

The next steps involve taking g to be a simple function which is a simple application of
linearity of expectation. Then using monotone convergence theorem we need to prove the
statement for g ≥ 0 and then finally for integrable g.

Exercise 2.20. Finish the proof by mimicking the proof of Theorem 2.18.

2.4 Applications of MCT and DCT

We finish this section with some applications of DCT. Before we start we need to extend our
viewpoint of random variables slightly, and assume they can take values ∞ or −∞. In this
case, we need to be wary of three cases.

• IfX−1({∞}) has positive probability butX−1({−∞}) has zero probability then E(X) =
∞.

• IfX−1({∞}) has zero probability butX−1({−∞}) has positive probability then E(X) =
−∞

• If both X−1({∞}) and X−1({−∞}) have positive probability then E(X) is undefined.

Lemma 2.21 (Bounded convergence theorem). Suppose M is a constant such that |Xn| ≤ M
for all n ≥ 1. Then E(Xn) → E(X).

Proof. This is a simple application of DCT where we take Y in Proposition 2.3 to be the
constant random variable.

Example 2.22. Suppose Xn ∼Binomial (n, 1/n) and {Xn}n≥1 is defined on the same prob-
ability space. Suppose we know Xn → X almost surely where X ∼Poisson(1). Calculate

lim
n→∞

E(eX cos(Xn)).

Using Exercise 2.8 we know that cos(Xn) converges almost surely to cos(X). Also note|eX cos(Xn)| ≤
eX and E(eX) < ∞ (check). Thus by DCT,

lim
n→∞

E(eX cos(Xn)) = E(eX cos(X)) =
∞∑
k=0

e1−k cos(k)

k!
.
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Lemma 2.23 (Reverse Fatou). If Xn ≤ Y for all n ≥ 1 with E(|Y |) < ∞, then

lim sup
n→∞

E(Xn) ≤ E(lim sup
n→∞

Xn).

Proof. Apply Fatou to Y −Xn (Exercise: Fill in the details.)

We now take a quick detour into two very useful inequalities.

Definition 2.24. A function φ : R 7→ R is convex if for all x ∈ R, for all p ∈ [0, 1],
φ(px+ (1− p)y) ≤ pφ(x) + (1− p)φ(y).

Usual examples include φ(x) = x2 or |x|p for p ≥ 1. A convex function is always
continuous and hence Borel measurable (exercise), but may not be differentiable (e.g.|x|).

Proposition 2.4 (Jensen’s inequality). Suppose X is a random variable with E(|X|) < ∞
and φ is convex. Then E(φ(X)) ≥ φ(E(X)).

Proof. It is a fact that for any convex function one can find a linear function ax + b such
that ax+ b ≤ φ(x) for all x ∈ R and such that ax0+ b = φ(x0)

13. Choose x0 = E(X). Then

E(φ(X)) ≥ E(aX + b) = aE(X) + b = ax0 + b = φ(x0) = φ(E(X)).

which is the required inequality.

Corollary 2.25. We have E(X2) ≥ (E(X))2 and hence Var(X) ≥ 0 where Var(X) :=
E(X2)− (E(X))2. In general E(|X|p) ≥ |E(X)|p if p ≥ 1.

Proof. Apply Jensen with φ(x) = |x|p which is convex for p ≥ 1.

A particularly useful application is taking the absolute value inside the expectation, spe-
cially for sums. For example, considering the random variable X uniform over the finite set
{x1, . . . , xn}, we get

|E(X)| ≤ E(|X|) =⇒ |x1 + . . .+ xn

n
| ≤ |x1|+ . . .+ |xn|

n
=⇒ |x1+. . .+xn| ≤ |x1|+. . .+|xn|.

See Proposition 2.19 for a discussion on the above formula. Also,

|E(X1 + . . .+Xn)| ≤ E(|X1 + . . .+Xn|) ≤ E(|X1|+ . . .+ |Xn|) =
n∑

k=1

E(|Xk|).

In other words, we took the absolute value inside at the expense of an inequality.

13See https://en.wikipedia.org/wiki/Subderivative
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Example 2.26. Take a sequence (Xn)n≥1 defined on the same probability space, butXn ∼Binomial
(n, 1

n3 ). Does the series
∑

n≥1Xn converge with probability 1? Note that E(Xn) =
1
n2 (Recall

if X ∼Binomial (n, p) then E(X) = np). Then∑
n≥1

E(Xn) =
∑
n≥1

1

n2
< ∞.

If we could push the expectation inside the sum without changing the value, then we would
get

E(
∑
n≥1

Xn) =
∑
n≥1

E(Xn) =
∑
n≥1

1

n2
< ∞.

which would imply that
∑

n≥1Xn < ∞ almost surely.

Lemma 2.27. Suppose
∑∞

n=1 E(|Xn|) < ∞. Show that
∑∞

n=1 Xn is almost surely absolutely
convergent series, and furthermore,

∞∑
n=1

E(Xn) = E(
∞∑
n=1

Xn).

Proof. The idea is to combine MCT and DCT. We first employ MCT to ensure DCT is
applicable, and then apply DCT. Let Yn =

∑n
k=1 |Xk|. Hence limn Yn =

∑∞
k=1 |Xk|. Notice

that by MCT,

E( lim
n→∞

Yn) = lim
n→∞

E(Yn) =
∞∑
k=1

E(|Xk|) < ∞

Thus limn→∞ Yn < ∞ almost surely (since it’s expectation is finite), and consequently,∑∞
n=1Xn is absolutely convergent almost surely. Let

Y = lim
n

Yn =
∞∑
k=1

|Xk|.

Now let

Zn =
n∑

k=1

Xk

So |Zn| ≤
∑n

k=1 |Xk| ≤
∑∞

k=1 |Xk| = Y and E(Y ) < ∞ as proved above. Thus by DCT,

lim
n

E(Zn) = E(lim
n

Zn) =⇒ lim
n

E(
n∑

k=1

Xk) = E(
∞∑
k=1

Xk)

This gives
∞∑
k=1

E(Xk) = E(
∞∑
k=1

Xk)
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Exercise 2.28. Let Xn ∼ N(0, 1
n2.1 ). Is

∑
n≥1Xn finite almost surely?

Example 2.29 (Integrable but not Riemann integrable). A classic example of a function
which is not Riemann integrable but Lebesgue integrable is the following. Take our favourite
probability space ([0, 1],B([0, 1]), λ̃) where λ̃ is the Lebesgue measure restricted to [0, 1].
Consider function 1I where I is the set of irrationals in [0, 1]. This is a function which is
Lebesgue integrable, and in fact since this is 1 a.s. E(1I) = 1. We leave it as an exercise to
verify that this function is not Riemann integrable. The punchline is that the infimum of
the function in any interval is 0 and supremum on any interval is 1 as rationals are dense.

Example 2.30. Suppose X is integrable. Then

E(X) = lim
n→∞

E(X1X∈[−n,n]).

Indeed, |X|1X∈[−n,n] = |X|1|X|∈[0,n] ≤ |X| and E(|X|) < ∞ since X is integrable. Also
X1X∈[−n,n] → X almost surely. Thus by DCT, we are done.

Example 2.31. Let X ∼Unif[0, 1]. Let us calculate

lim
n→∞

E
(
(1− 10e−

X2

n )
1√
X

)
We could try to apply MCT, but since the integrand is not always non-negative, there is an
issue with applying it. Nevertheless, we can apply DCT. We see

|(1− 10e−
X2

n )
1√
X
| ≤ 1√

X
and E(

1√
X
) =

∫ 1

0

1√
x
dx = 2.

Now simply observe,

lim
n→∞

(1− 10e−
X2

n )
1√
X

=
1√
X
.

Thus by DCT,

lim
n→∞

E((1− 10e−
X2

n )
1√
X
) = E(

1√
X
) = 2.

Example 2.32. Using DCT, we can show that∫ ∞

0

e−x cos(πtx)dx

is continuous in t. We are going to assume e−x cos(πtx) is continuous in t for a fixed x, which
is something we learnt in basic analysis. Now note that |e−x cos(πtx)| ≤ e−x for all x, t. Also∫∞
0

e−x < ∞. Thus for any tn → t, by DCT,

lim
n→∞

∫ ∞

0

e−x cos(πtnx)dx =

∫ ∞

0

lim
n→∞

e−x cos(πtnx)dx =

∫ ∞

0

e−x cos(πtx)dx

by continuity of the function e−x cos(πtx).
Another, perhaps more probabilistic approach, is to note:∫ ∞

0

e−x cos(πtx)dx = E(cos(πtX))

and then use bounded convergence theorem.
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3 Independence

The goal of this section is to define the notion of independence and how to use it. We will
define it for objects of increasing complexity.

Definition 3.1 (Independence of events). We say the events {Ei}i∈I are independent (some-
times called mutually independent) if for any finite J ⊂ I

P(∩j∈JEj) =
∏
j∈J

P(Ej).

Definition 3.2. We say the events {Ei}i∈I are pairwise independent if

P(Ei ∩ Ej) = P(Ei)P(Ej) for all i ̸= j, i, j ∈ I.

Exercise 3.1. Suppose {Ak}k≥1 are independent. Then show that any sequence of the form
{Bk}k≥1 where each Bk is either Ak or Ac

k is independent. Use induction.

Independence of σ-algebras The definition is similar. In fact we will define indepen-
dence for an arbitrary collection of sets rather than sigma algebras.

Definition 3.3 (independence of collections of events). Let (Ω,F ,P) be a probability space.
Define a collection {Fi}i∈I such that Fi ⊂ F for all i. We say the collection {Fi}i∈I is
independent if for all J ⊂ I, and {Ej}j∈J , where Ej ∈ Fj for all j ∈ J , the collection
{Ej}j∈J is independent.

Note that the definition makes sense even if Fi are not σ-algebras. Let us emphasize that
the independence criterion must be valid for all events in the σ-algebra. Fortunately, there
is a simpler way to test the independence of σ-algebras.

Proposition 3.2. Let (Ω,F ,P) be a probability space. Let P ,Q be π systems in F . Suppose

P(A ∩B) = P(A)P(B) for all A ∈ P , B ∈ Q.

Then σ(P), σ(Q) are independent.

Proof. We are going to apply the uniqueness theorem Theorem 1.2 twice. First fix A ∈ P .
Consider the measure

µA(B) := P(A)P(B), B ∈ σ(P). PA(B) := P(A ∩B), B ∈ σ(P)

Since µA and PA both agree on Q, by the uniqueness Theorem 1.2, µA(B) = PA(B) for all
B ∈ σ(Q) (we don’t need to check the second condition in Theorem 1.2 as we are dealing
with probability measures.)

Since A is an arbitrary element in σ(Q) we are done.

Exercise 3.3. Extend the above to a general collection of σ-fields. That is, if {Aj}j∈J are
collections of sets such that Aj ⊂ F for all j ∈ J , and Aj are π-systems then {σ(Aj)}j∈J
are independent.
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Independence of random variables Let us start by recalling the definition of the σ-
algebra which is generated by a random variable.

Definition 3.4. Suppose Ω is a sample space, and suppose X : Ω 7→ R is a random variable
defined on it. We define σ(X) to be the smallest sigma algebra which makes X measurable.
In other words,

σ(X) = ∩{F : F is a σ-algebra, X−1(E) ∈ F for all E ∈ B(R)}.

In other words,

σ(X) = σ({X−1(A), A ∈ B(R)}) = σ({X−1((−∞, x]), x ∈ R}).

Definition 3.5. σ-algebra generated by a collection of random variables {Xi}i∈I , denoted
σ({Xi}i∈I), is the smallest σ-algebra which makes all of the Xis measurable. In other words,
we have

σ({Xi}i∈I) = σ(X−1
i (A), i ∈ I, A ∈ B(R)).

Note that
σ({Xi}i∈I) = σ({σ(Xi) : i ∈ I}).

Definition 3.6 (Independence). We say a collection of random variables {Xi}i∈I are inde-
pendent if {σ(Xi) : i ∈ I} are independent.

Definition 3.7 (Independence). If we have two collections {Xi}i∈I and {Yj}j∈J , we say
{Xi}i∈I is independent of {Yj}j∈J if σ({σ(Xi) : i ∈ I}) is independent of {Yj}j∈J

Exercise 3.4. Suppose {Xi}i∈I are independent. Suppose I1 ⊂ I and I2 ⊂ I such that
I1 ∩ I2 = ∅. Then {Xi}i∈I1 and {Xi}i∈I2 are independent. Hint: Use the same idea as in the
proof of Proposition 3.2.

Similarly if we have a countable partition I = ∪∞
i=1Ij and Ij ∩ Ij′ = ∅ if j ̸= j′ then

{σ({Xm}m∈Ij) : j ≥ 1} are independent.

Proposition 3.5 (Test for independence).

P(∩jXj ≤ bj∀j ∈ J) =
∏
j∈J

P(Xj ≤ bj).

Proof. This follows from exercise 3.3 as {(−∞, b] : b ∈ R} is a π-system.
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3.1 Construction of independent random variables

In general it is not at all easy to construct a sequence of mutually independent events
directly. However, here is a construction.

Example 3.6 (A hands on construction of independent events(due to James Norris)). Take
the probability space ([0, 1],B([0, 1]), λ|[0,1]) where λ is as usual the Lebesgue measure re-
stricted to [0, 1]. Take A1 = (0, 1/2], A2 = (0, 1/4] ∪ (1/2, 3/4] and in general

Ak = ∪0≤i<2k−1(
2i

2k
,
2i+ 1

2k
). Note that λ(Ak) =

1

2
.

Exercise 3.7. Show that {Ak}k≥1 are mutually independent. Start by showing {A1, A2}
are independent. Note that ‘half’ of Aj is a subset of Ak if j > k.

Proposition 3.8. For any sequence of distributions (µn)n≥1 (or equivalently distribution
functions Fn (cf. Definition 1.10)), we can construct a probability space and a sequence of
independent random variables (Xn)n≥1 on it such that Xn has distribution µn.

Proof sketch. Take the probability space ([0, 1],B([0, 1], λ) where λ is the Lebesgue mea-
sure restricted to [0, 1]. Let Ak be as in Example 3.6. Let ξk = 1Ak

. Note that σ(ξk) =
{∅, Ak, A

c
k,Ω}. Thus by exercise 3.1, we see that (ξk)k≥1 are independent. Thus we have con-

structed an i.i.d. sequence of Bernoulli (1/2) random variables since λ(ξk = 1) = λ(Ak) =
1
2

(see Example 3.6).
Now let us consider

U :=
∑
k≥1

ξk
2k

.

We claim that U ∼Unif[0, 1]. The idea is that this is roughly like a binary expansion where
each entry in the expansion is ξk which has equal probability to be 0 or 1, hence this leads
to a uniform distribution. Here is a rigorous argument. Take any n ≥ 1 and let 0 ≤ m < 2n,
and binary expand

m

2n
= .b1 . . . bn.

Recall how binary expansion works: once we know m, we divide the interval [0, 1] into
two equal halves and then let b1 to be 0 or 1 depending on whether m falls in the right or
the left half. Once we know b1, we divide the half we chose into two equal halves again, and
choose b2 to equal 0 or 1 depending on whether m falls on the left or the right half, and so
on. In otherwords,

n∑
i=1

bi
2i

=
m

2n
.

Once we have this, we note that

P(U ∈ [
m

2n
,
m+ 1

2n
) = P(ξ1 = b1, . . . , ξn = bn) =

1

2n
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To see this, simply note ∑
k≥n+1

ξk
2k

≤
∑

k≥n+1

1

2k
=

1

2n
.

Thus we conclude that
P(U ≤ r) = r

for every number r ∈ [0, 1] of the form r = m
2n
, m ∈ N, n ∈ N (such an r is called a dyadic

rational). Now for any x ∈ [0, 1], choose a sequence of dyadic rational rn ↓ x. By continuity
from above (Lemma 1.15),

P(U ≤ x) = lim
n→∞

P(U ≤ rn) = lim
n→∞

rn = x.

Thus U ∼Uniform [0, 1].
Now the point is that we can sum over any countable collection of indices and get a

uniform random variable in this way. Now if we can now partition N = ∪∞
j=1Ij such that Ij

s are disjoint and define Uj =
∑

k∈Ij
ξk
2k
, we have created i.i.d. uniform random variables.

By the proof of proposition 1.36, we are done as it is proved there that Xm has distribution
µm.

The extreme opposite of X, Y being independent is that one is completely determined
by the other.

We now state a theorem without proof, which is very much believable. For the interested
reader, the proof involves measure theory and monotone class theorem.

Theorem 3.1. Suppose X1, . . . , Xn are independent and defined over the probability space
(Ω,F ,P). Let f1, . . . , fn be measurable functions. Then

E(
n∏

i=1

fi(Xi)) =
n∏

i=1

E(fi(Xi)).

Proof. (For the interested reader, not part of the course) See the proof of Theorem 4.9 in
14

Applications. The applications of Theorem 3.1 are rather widespread. For example, if
X, Y are independent, then

E(sin(X)eX+Y ) = E(sin(X)eX)E(eY ).
14Addario–Berry’s notes.
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3.2 Borel Cantelli Lemmas.

The Borel Cantelli Lemmas are perhaps the most used statements in probability theory. We
need two definitions

Definition 3.8.

lim sup
n→∞

En =
⋂
n≥1

⋃
m≥n

Em = {ω ∈ Ω : ω ∈ En for infinitely many n}. (3.1)

lim inf
n→∞

En =
⋃
n≥1

⋂
m≥n

Em = {ω ∈ Ω : ω ∈ En for all but finitely many n}. (3.2)

(3.3)

In probabilistic language, or in “English”,

ω ∈ lim sup
n→∞

En =⇒ ω ∈ En for infinitely many n.

Thus we also say

lim sup
n

En = {En occurs infinitely often} or simply {En occurs i.o.}

Similarly,

lim inf
n

En = {En occurs for all but finitely many n} or simply {En occurs eventually}

Example 3.9. Suppose there are infinitely many clocks, each running an amount of time
given by Xn where Xn ∼Exp(1). Assume all the Xns are defined on the same probability
space (Ω,F ,P). Let

An = {Xn ≥ n}

and
Bn = {Xn ≥ log n}

and
Cn = {Xn ≥ 2 log n}.

(notice how the events are different for each n). Then

lim supAn = {An occurs i.o.} = {Xn ≥ n for infinitely many n}.

Similarly we can write down

lim sup
n

Bn = {Xn ≥ log n for infinitely many n}

and
lim sup

n
Cn = {Xn ≥ 2 log n for infinitely many n}.
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Also

lim inf
n

An = {An occurs evenually for all large enough n} = {Xn ≥ n evenually for all large enough n}.

Another lengthy way of saying the same thing is that

lim inf An = {ω : ∃N(ω) such that Xn(ω) ≥ n for all n ≥ N(ω)}.

Exercise 3.10. Write down similarly lim infnBn and lim infnCn in “English” or “proba-
bilistic language”.

Exercise 3.11. Show that
(lim sup

n
En)

c = lim inf
n

(Ec
n)

by simply writing down the definitions and applying De-Morgan.

Lemma 3.12 (First Borel–Cantelli lemma). Let {En}n≥1 be a collection of events defined
on the same probability space (Ω,F , P ). Then if∑

n≥1

P(En) < ∞

then
P(En occurs infinitely often) = P(lim sup

n
En) = 0.

Proof. Fix ε > 0. Since
∑

n≥1 P(En) < ∞, there exists an n0 such that for all n ≥ n0,∑
n≥n0

P(En) < ε.

Now notice that

P(lim sup
n

En) = P(
⋂
n≥1

⋃
m≥n

Em) ≤ P(
⋃

m≥n0

Em) ≤
∑
n≥n0

P(Em) < ε.

whihc completes the proof.

Lemma 3.13 (Second Borel–Cantelli lemma). Suppose {En}n≥1 is a collection of indepen-
dent events defined on the same probability space (Ω,F , P ). Then if

∞∑
n=1

P(En) = ∞,

then
P(En occurs infinitely often) = P(lim sup

n
En) = 1.
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The assumption of independence in the second Borel–Cantelli lemma is crucial as we
shall see in applications later.

Proof. By Exercise 3.11, (lim supn En)
c = lim inf Ec

n. Thus

P((lim sup
n

En)
c) = P(lim inf Ec

n) = P(
⋃
n≥1

⋂
m≥n

Ec
m) ≤

∞∑
n=1

P(
⋂
m≥n

Ec
m)

We will show that each summand above is 0. For any N ≥ n, simply by inclusion of events,

P(
⋂
m≥n

Ec
m) ≤ P(

N⋂
m=n

Ec
m)

Let pm = P(Em) to simplify notation. Notice

N∏
m=n

P(Ec
m) =

N∏
m=n

(1− P(Em)) =
N∏

m=n

(1− pm) ≤ e−
∑N

m=n pm

since
∑

m≥n pm = ∞ by assumption, for any ε > 0, we can choose N large enough so that

e−
∑N

m=n pm < ε. The proof is complete since the choice of ε is arbitrary.

Remark 3.14 (Infinite monkey theorem). Borel-Cantelli lemmas lie at the heart of various
‘paradoxes’ like the infinite monkey theorem, see this wiki link. Namely, a monkey randomly
hitting the typewriter, will almost surely type the full works of Shakespeare almost surely.
In fact, they will produce the full works infinitely many times with prob. 1! In other words,
if some event has positive probability, no matter how small, is bound to happen.

Here is a quick argument of why this is the case. Let M be the number of characters in
the full works of Shakespeare. The probability that the monkey randomly produces exactly
this sequence of characters is 27−M 15 (an astronomically small number, still positive!). If we
break up the characters produced by the monkey into segments (I1, I2, . . .) of length M , and
let ξi ∼Bernoulli (27−M) counts if segment i produced the desired full works of Shakespeare,
then by Borel–Cantelli, assuming independence of ξi,

∑
i≥1 ξi = ∞ almost surely.

Let us get back to the example we were dealing with.

Example 3.15. Suppose there are infinitely many clocks, each running an amount of time
given by Xn where Xn ∼Exp(1). Assume all the Xns are defined on the same probability
space (Ω,F ,P). Let

An = {Xn ≥ n}

Notice

P(An) = P(Xn ≥ n) =

∫ ∞

n

e−tdt = e−n

15including ‘space’
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so ∑
n

P(An) =
∞∑
n=1

e−n < ∞

So
P(An occurs i.o. ) = 0.

In words,
almost surely, Xn ≤ n for all large enough n.

Let us turn to

Bn = {Xn ≥ log n}

By the same logic,

∑
n

P(Bn) =
∞∑
n=1

e− logn =
∞∑
n=1

1

n
= ∞

So we cannot say anything more. If we had the further information that Bn are independent,
then

P(Bn occurs i.o.) = 1

or in other words, if Xns are independent then

almost surely, Xn ≥ log n for infinitely many n.

Exercise 3.16. Show that almost surely {Xn ≤ 2 log n} for all large enough n.

Example 3.17. Suppose Xn is a sequence of random variables. Does there exist a sequence
of numbers cn > 0 such that Xn/cn → 0 a.s.? Indeed, yes. Since P(Xn > t) → 0 as
t → ∞, we can find cn such that P(|Xn|/cn > 2−n) < 2−n. Since

∑
n≥1 2

−n < ∞, we must
have |Xn|/cn ≤ 2−n for all large enough n almost surely. Check from the definitions of
convergence of sequences that Xn/cn → 0 a.s.

3.3 Basics of moments

For a random variable X with E(X) = µ ∈ R, we define its variance as

Var(X) = E[(X − µ)2] = E(X2)− µ2 where µ = E(X).

and Covariance as

Cov(X, Y ) = E[(X − E(X))(Y − E(Y ))] = E(XY )− E(X)E(Y ).

Exercise 3.18. Prove the second equality in the definition of Variance above.

Definition 3.19. Cov(X, Y ) = E[(X − E(X))(Y − E(Y ))]
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Exercise 3.20. Show E[(X − E(X))(Y − E(Y ))] = E(XY )− E(X)E(Y ).

Note that Cov(X,X) = V ar(X). Furthermore, from Theorem 3.1, we see that if X, Y
are independent, then

Cov(X, Y ) = E(XY )− E(X)E(Y ) = E(X)E(Y )− E(X)E(Y ) = 0.

Example. Suppose (X, Y ) are indicator random variables, that is, X = 1A and Y = 1B.
Then

Cov(X, Y ) = P(X = 1, Y = 1)− P(X = 1)P(Y = 1)

So
Cov(X, Y ) > 0 =⇒ P(X = 1|Y = 1) > P(X = 1).

Tells us that Cov(X, Y ) > 0 means that Y increasing means X is increasing (in other words,
“ B attracts A ”). On the other hand, the same logic shows that Cov(X, Y ) < 0 implies
that B repels A.

Definition 3.21. Also we define Correlation between two random variables X, Y as

Correlation(X, Y ) = Cor(X, Y ) =
Cov(X, Y )√

V ar(X) · V ar(Y )
.

Example The joint density of (X, Y ) is given by

f(x, y) =

{
3x, 0 < y ≤ x ≤ 1.

0 otherwise.

Calculate Cov(X, Y ). V ar(X), V ar(Y ), Corr(X, Y ).

Solution. Marginal of X:
∫ x

0
3xdy = 3x2 , if 0 < x < 1.

Marginal of Y :
∫ 1

y
3xdx = 3x2

2
|1y = 3

2
(1− y2), 0 < y < 1

E(X) =
∫ 1

0
3x3dx = 3

4
. E(X2) =

∫ 1

0
3x4dx = 3

5
.

V ar(X) = 3
5
− 9

16
= 3

80

E(Y ) =
∫ 1

0
y 3
2
(1− y2)dy = 3

2
[1
2
− 1

4
] = 3

8
.

E(Y 2) =
∫ 1

0
y2 3

2
(1− y2)dy = 3

2
[1
3
− 1

5
] = 1

5
.

V ar(Y ) = 1
5
− (3/8)2 = 19

320
.

E(XY ) =
∫ 1

0

∫ x

0
xy3xdydx =

∫ 1

0
3x2(

∫ x

0
ydy)dx =

∫ 1

0
3
2
x4dx = 3

10
. So Cov(X, Y ) = E(XY )−

E(X)E(Y ) = 3
10

− 9
32
.

47



Properties of Covariance

a. Cov(X,X) = V ar(X).

b. Cov(X, Y ) = Cov(Y,X) (Verify)

c. Cov(cX, Y ) = cCov(X, Y ).

d. Cov(X, Y + Z) = Cov(X, Y ) + Cov(Y, Z)

Exercise 3.22. Verify the above properties, they follow from the definition of Covariance
and some algebra.

Example 3.23 (Uncorrelated does not imply independence). Let X = +1 with probability
1/2 and −1 with probability 1/2, (i.e. X = ξ − 1 where ξ ∼ Ber(1/2).) If X = 1 then
Y = 1000 with prob 1/2 and −1000 with prob. 1/2. If X = −1 then Y = 0. Then E(Y ) = 0,
E(X) = 0 and E(XY ) = 1000 × 1/4 + (−1000) × 1/4 = 0. Therefore Cov(X, Y ) = 0. But
P(Y = 0|X = 1) = 0 ̸= P(Y = 0) = P(X = −1) = 1/2. So X and Y are not independent.

We can generalize property d. to

Cov(
n∑

i=1

Xi,
m∑
j=1

Yj) =
n∑

i=1

m∑
j=1

Cov(Xi, Yj)

Therefore, we obtain a special case:

Var(
n∑

i=1

Xi) =
n∑

i=1

n∑
j=1

Cov(Xi, Xj) =
n∑

i=1

Cov(Xi, Xi) +
n∑

i=1

∑
j ̸=i

Cov(Xi, Xj)

=
n∑

i=1

V ar(Xi) + 2
n∑

i=1

∑
j<i

Cov(Xi, Xj)

Corollary 3.24. If Xi : 1 ≤ i ≤ n are pairwise uncorrelated ,i.e., Cov(Xi, Xj) = 0 for all
i ̸= j then

V ar(
n∑

i=1

Xi) =
n∑

i=1

V ar(Xi).

Example. Here is a neat way to compute the variance of Bin (n, p). We know if X ∼
Bin(n, p) then X =

∑n
i=1 ξi where ξi ∼ Ber(p). Note that V ar(ξ1) is easy to compute

V ar(ξ1) = E(ξ21)− (E(ξ1))2 = p− p2 = p(1− p).

Therefore
V ar(X) = nV ar(ξ1) = np(1− p).
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Definition 3.25. For random variables X1, . . . , Xn,

X̄ =
X1 + . . .+Xn

n

is called the sample mean.

Warning: This is not the “mean” or the “expectation” of a random variable which is a
number. Sample mean is itself a random variable!

Proposition 3.26. If X1, . . . , Xn are i.i.d. with mean µ and Variance σ2. Then

1. E(X̄) = µ.

2. V ar(X̄) = σ2/n.

3. Cov(X̄,Xi − X̄) = 0

Proof. E(X̄) = nµ/n = µ and V ar(X̄) = 1
n2V ar(

∑n
i=1Xi) =

nσ2

n2 = σ2

n
. Finally note

Cov(X̄,Xi) =
1

n

n∑
j=1

Cov(Xj, Xi) =
σ2

n
.

Therefore

Cov(X̄,Xi − X̄) = Cov(X̄,Xi)− Cov(X̄, X̄) =
σ2

n
− σ2/n = 0.

4 Modes of convergence of random variables.

Recall the definition of almost sure convergence, that we already introduced.

Definition 4.1 (Almost sure convergence). We say Xn almost surely converges to a random
variable X if we set

Ω0 = {ω ∈ Ω : Xn(ω) converges to X(ω)}

then
P(Ω0) = 1.

We now introduce a new notion of convergence, which will turn out to be weaker than a.s.
convergence.

Definition 4.2 (Convergence in probability). Suppose {Xn}n≥1, X be random variables
defined on the same probability space. We say Xn converges to X in probability if for all
ε > 0,

P(|Xn −X| > ε) −−−→
n→∞

0

The notation is
Xn

P−−−→
n→∞

X.
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To prove convergence in probability, the following inequalities are extremely useful.

Proposition 4.1. Suppose X is a.s. non-negative. For any a > 0,

P(X ≥ a) ≤ EX
a

Proof. Simply note

E(X) = E(X1X≥a) + E(X1X≤a)

≥ aP(X ≥ a).

which after rearranging yields the desired inequality.

Proposition 4.2 (Chebyshev’s inequality). Let X be a random variable with mean µ and
Variance σ2. Then for any a > 0,

P(|X − µ| ≥ a) ≤ σ2

a2

Proof. Since (X − µ)2 ≥ 0, applying Markov’s inequality,

P((X − µ)2 ≥ a2) ≤ E((X − µ)2)

a2
=

σ2

a2
.

We can now present a weak version of a law of large numbers. Also it is useful to recall
the following useful properties of variance.

Theorem 4.3 (Weak law of large numbers). Let X1, X2, . . . be i.i.d. with E(X1) = µ and
Var(X1) = σ2. Let Sn =

∑n
i=1Xi. Then

Sn

n

P−−−→
n→∞

µ.

Proof. Note that for all ε > 0, by Chebyshev

P(|Sn/n− µ| > ε) ≤ Var(Sn/n)

ε2
=

nσ2

n2ε2
=

σ2

nε2
→ 0

as desired.

In fact we will see that a much stronger version of the weak law of large numbers is true,
which is called the strong law of large numbers. We will prove it soon. But let us prove
some relationships between these various notions of convergence.

Lemma 4.4. If Xn converges almost surely to X, then Xn converges to X in probability.
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Proof. Fix ε > 0. Notice that

Ω0 := {ω : lim
n→∞

|Xn(ω)−X(ω)| = 0} ⊆ {ω : lim sup
n

|Xn(ω)−X(ω)| ≤ ε}.

Thus letting Zn = 1|Xn(ω)−X(ω)|≤ε, we see that {ω : Zn(ω) → 1} ⊇ Ω0 and consequently
Zn → 1 almost surely. Also |Zn| ≤ 1 for all n. Thus by DCT

limE(Zn) = E(1) = 1 =⇒ limP(|Xn −X| ≤ ε) = 1

Consequently
lim
n→∞

P(|Xn −X| > ε) = 0

which completes the proof.

The converse is not true. Here is an example.

Example 4.5. Suppose ξn be i.i.d. Bernoulli (1/n). Then for any ε > 0, P(|ξn| > ε) =
P(ξn = 1) = 1/n → 0. But

∞∑
n=1

P(ξn = 1) =
∞∑
n=1

1

n
= ∞

Thus by Borel–Cantelli,
P(ξn = 1 i.o.) = 1

which means
P({ω : lim

n→∞
ξn(ω) = 0} = 0.

So the probability that Xn converges to X has to decay “fast enough” so that almost
sure convergence also holds.

Lemma 4.6. If Xn converges to X in probability then there exists a subsequence {nk}k≥1

such that Xnk
→ X almost surely as k → ∞.

Proof. We will leverage the fact that P(|Xn −X| > ε) → 0 for all ε > 0 and also employ
Borel Cantelli to choose a fast growing subsequence.

For any k ∈ N, we know that

P(|Xn −X| ≥ 1

k
) → 0.

as n → ∞. Therefore, we can choose an nk large enough such that

P(|Xnk
−X| ≥ 1

k
) ≤ 2−k.

The key is that the right hand side above is chosen to decay fast enough so that it is
summable. Thus for a fixed m ∈ N,

∞∑
k=1

P(|Xnk
−X| ≥ 1

m
) ≤ m+

∑
k≥m

2−k < ∞.
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Since for k ≥ m, P(|Xnk
−X| ≥ 1

m
) ≤ P(|Xnk

−X| ≥ 1
k
) ≤ 2−k and we bound the probability

trivially by 1 for k < m. Overall, applying the first Borel–Cantelli lemma, for every m ∈ N,
|Xnk

−X| < 1
m

for all large enough k. In other words, for every m ∈ N,

P(lim sup
k

|Xnk
−X| ≥ 1

m
) = 0.

But if lim supk |Xnk
−X| > 0, there must be some m ∈ N, such that lim supk |Xnk

−X| ≥ 1
m
.

Thus

P(lim sup
k

|Xnk
−X| > 0) ≤ P(∪∞

m=1{lim sup
k

|Xnk
−X| ≥ 1

m
})

≤
∞∑

m=1

P(lim sup
k

|Xnk
−X| ≥ 1

m
) =

∞∑
m=1

0 = 0.

We record a partial converse.

Proposition 4.7. Xn
P−−−→

n→∞
X if and only if for every subsequence {nk}k≥1 there exists a

further subsequence {nkℓ}ℓ≥1 such that Xnkℓ

a.s.−−−→
ℓ→∞

X

Proof. Xn
P−−−→

n→∞
X implies Xnk

P−−−→
k→∞

X, so one can extract a subsequence using Lemma 4.6.

For the converse, fix an ε > 0 consider the sequence {an}n≥1 = {P(|Xn − X| > ε)}n≥1.
For this sequence, for every subsequence there is a further subsequence that converges to 0
(since almost sure convergence of the subsequence implies convergence in probability). This
means {an} converges to 0 as the set of all subsequential limits of (an)n∈N has to be 0.

Remark 4.8. Proposition 4.7 shows that almost sure convergence cannot describe a topology
on the space of random variables. If it did, then if for a sequence, we could extract a
subsequence of every subsequence which converges almost surely, then the sequence would
have to converge almost surely. But we know that there are random variables which converge
in probability but not almost surely, yet Proposition 4.7 ensures that for every subsequence
we can extract a further subsequence which converges almost surely.

Convergence in distribution The third notion of convergence is convergence in distri-
bution. This is a statement about convergence of the probability measures µXn so in general
the Xn need not be defined on arbitrary probability spaces. One would have liked the def-
inition to be ‘µn → µ if µn(A) → µ(A) for all Borel A’, but in reality that does not work,
we need something more sophisticated. The overarching theorem in this context is known
as the Portmanteau theorem, but we will be content with a weaker version of that theorem
for real values random variables.

Recall the definition of cumulative distribution function FX = P(X ≤ x). This notion of
convergence only deals with convergence of the probability measures without referring at all
to the probability spaces on which the random variables are defined.

52



Definition 4.3 (Convergence in distribution). We say Xn converges in distribution to X,
with notation

Xn
n→∞−−−→
(d)

X

if for all continuity points x of FX ,

FXn(x) −−−→
n→∞

FX(x).

The assumption of convergence at all continuity points is necessary as otherwise many natural
examples will fail to converge in distribution. For example, define

P(ξn = 1 +
1

n
) =

1

2
= P(ξn = 0) (4.1)

We would like ξn to converge to a Bernoulli (1/2) random variable ξ. But at x = 1, (a
non-continuity point of ξ),

Fξ(1) = 1 but Fξn(1) =
1

2
for all n

Thus Fξn(1) ̸→ Fξ(1). However, the convergence holds at all other points. Hence ξn does
converge in distribution to ξ according to the definition.

Proposition 4.9. If Xn
P−−−→

n→∞
X in probability, then Xn

(d)−−−→
n→∞

X.

Proof. Notice that since FX is monotone, there can be at most countably many points where
FX(x−) < FX(x) (Exercise: check!). Thus we can ignore those points and still uncountably
points remaining which are continuity points of X. Take a continuity point x of FX and fix
an ε. By continuity of FX at x, we can ensure that

FX(x+ δ) ∈ (FX(x), FX(x) + ε) and FX(x− δ) ∈ (FX(x), FX(x)− ε).

Now note

{Xn ≤ x} ⊆ {X ≤ x+ δ}∪{|Xn−X| > δ} and {X ≤ x− δ} ⊆ {Xn ≤ x}∪{|Xn−X| > δ}.

Thus taking limsup of the probability of the left hand side,

lim sup
n

P(Xn ≤ x) ≤ P(X ≤ x+ δ) + lim sup
n

P(|Xn −X| > δ) < ε

for the choice of δ by the convergence in probability assumption. Similarly, taking the liminf
of the probability of the right hand side,

P(X ≤ x− δ) ≤ P(Xn ≤ x) + P(|Xn −X| > δ)

=⇒ lim inf
n

P(Xn ≤ x) ≥ P(X ≤ x− δ)− lim inf
n

P(|Xn −X| > δ) < ε.

which completes the proof.

53



The converse of Proposition 4.9 is not true. If X,X1, X2, . . . are i.i.d. Bernoulli(1/2)
defined on the same probability space then clearly Xn → X in distribution, but P(|Xn−X| >
1/4) ≥ P(Xn = 0, X = 1) ≥ 1

4
̸→ 0.

However in the special case when the limiting random variable is a constant, the following
is true.

Proposition 4.10. If Xn → c in distribution where c ∈ R is a constant, then Xn → c in
probability.

Proof. Suppose Xn → c in distribution. Then for all ε > 0, FXn(c + ε) → 1 =⇒ P(Xn >
c+ε) → 0 and FX(c−ε) → 0 (c is the only point of discontinuity of the distribution function
of the degenerate random variable which takes the value c with probability 1). Then

P(|Xn−c| > ε) = P({Xn > c+ε}∪{Xn < c−ε}) ≤ P(Xn−c > ε)+P(Xn−c < −ε) → 0+0 = 0

as desired.

To summarize:

A.s. convergence =⇒ Convergence in probability =⇒ convergence in distribution.

And finally, convergence in distribution to a constant implies convergence in probability.

4.1 Laws of large numbers

Theorem 4.1 ((Weak version of ) Strong law of large numbers). Suppose X1, . . . , are i.i.d.
with E(X4

1 ) < ∞ and E(X1) = µ. Then

X1 + . . .+Xn

n

a.s.−−−→
n→∞

µ.

Proof. We can assume without loss of generality that µ = 0, since otherwise we can take
X̃i = Xi − µ and prove the result for X̃i. Let Sn = X1 + . . . +Xn. By Markov’s inequality
Proposition 4.1

P(
|Sn|
n

≥ ε) ≤ E(S4
n)

εn4
=

∑
1≤i1,i2,i3,i4

E(Xi1Xi2Xi3Xi4)

n4ε4

Now we claim
E(Xi1Xi2Xi3Xi4)

n4ε4
≤ C

n2

for some constant C > 0, which is summable. Using the claim we can conclude by first
Borel–Cantelli and and argument similar to the proof of Lemma 4.6.

To prove the claim, note that by independence and since the mean is assumed to be 0,
any term where i1 /∈ {i2, i3, i4} vanishes and similarly for i2, i3, i4. Thus the only terms which
remain are those with i1 = i2 and i3 = i4. The number of such terms is at most

n+

(
n

2

)(
4

2

)
≤ Cn2

as desired.
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Proposition 4.11 (Durrett Theorem 2.3.9.). Suppose (An)n≥1 are pairwise independent
events. Let Sn =

∑n
k=1 1Ak

and E(Sn) → ∞ as n → ∞. Then

Sn

E(Sn)
→ 1 a.s.

Proof. We first prove something weaker: convergence in probability. Note

P(
∣∣∣∣ Sn

E(Sn)
− 1

∣∣∣∣ > ε) ≤ Var(Sn)

ε2(E(Sn))2

Since 1Ak
are pairwise independent, Var(Sn) =

∑n
k=1Var(1Ak

) =
∑n

k=1 P(Ak)(1− P(Ak)) ≤∑n
k=1 P(Ak) = E(Sn). Thus plugging it back

P(
∣∣∣∣ Sn

E(Sn)
− 1

∣∣∣∣ > ε) ≤ E(Sn)

ε2(E(Sn))2
=

1

ε2E(Sn)
→ 0. (4.2)

since E(Sn) → ∞.
Now we could directly use Lemma 4.6 to get almost sure convergence. However, to

turn the convergence along subsequence to a full convergence, we need more control on the
‘sparseness’ of the subsequence. To that end, our hope we want go for the slowest rate of
convergence possible so that we can still have almost sure convergence. It turns out that a
polynomial decay is enough.

Let us implement the above idea. We can choose a subsequence nk such that nk is the
smallest m such that E(Sm) ≥ k2. Note

P(
∣∣∣∣ Snk

E(Snk
)
− 1

∣∣∣∣ > ε) ≤ 1

εE(Snk
)
≤ 1

εk2
.

which is summable. Hence by the first Borel-Cantelli, |Snk
− E(Snk

)| ≤ εE(Snk
) for all large

enough k almost surely. Let Am be the set on which this inequality holds for all large enough
k with ε = 1

m
. On ∩m≥1Am, Snk

/E(Snk
) → 1 and ∩m≥1Am has probability 1. Thus overall,

Snk
/E(Snk

) → 1 a.s.
Since St increases by at most 1 as t increases to t + 1 (we are only adding indicators),

we have k2 ≤ E(Snk
) ≤ k2 + 1 for all k. Furthermore, for every m between nk and nk+1,

Snk
≤ Sm ≤ Snk+1

a.s. since Sn is non-decreasing (consequently E(Snk
) ≤ E(Sm) ≤ E(Snk+1

)
as well). Thus for every n such that nk ≤ n ≤ nk+1,

Snk

E(Snk+1
)
≤ Sn

E(Sn)
≤

Snk+1

E(Snk
)

a.s.

Note
k2

(k + 1)2 + 1
≤ E(Snk

)

E(Snk+1
)
≤ k2 + 1

(k + 1)2

In fact this is the reason for choosing a polynomial sequence k2 rather than e−k.
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and consequently,
E(Snk

)

E(Snk+1
)
→ 1 as k → ∞. Thus

Snk+1

E(Snk
)
=

Snk+1

E(Snk+1
)

E(Snk+1
)

E(Snk
)

→ 1 a.s.

and similarly
Snk

E(Snk+1
)
→ 1 a.s. as well. Thus Sn

E(Sn)
is sandwiched between two random

variables for all n, both of which converge to 1 a.s. and hence it converges to 1 a.s. as
well.

4.2 Skorokhod representation theorem

Note that the properties in Section 2.2 mostly require almost sure convergence. Can we
replace a.s. convergence by convergence in probability? The following theorem allows us to
bypass this issue.

Theorem 4.2 (Skorokhod representation theorem). Suppose

Xn
(d)−−−→

n→∞
X.

Then there exists a probability space and a collection of random variables {Yn}n≥1 and Y
defined on that space such that Yn and Xn have the same distribution, X and Y have the
same distribution, and furthermore

Yn
a.s.−−−→

n→∞
Y

Proof sketch. Take our favourite probability space ([0, 1],B([0, 1]), λ) where λ is the Lebesgue
measure on [0, 1]. Let Fn = FXn denote the cdf of Xn. Define

Yn(p) = inf{x : Fn(x) ≥ p}.

We now complete the proof on the special case that {Fn}n≥1, F are all one-one and onto
with range (0, 1) so that the inverse exists. This means that the definition simplifies to

Yn(p) = F−1
n (p); Y (p) = F−1(p) for p ∈ (0, 1).

Note

λ(Yn ≤ t) = λ({p : F−1
n (p) ≤ t}) = λ({p : p ≤ Fn(t)}) = Fn(t) = P(Xn ≤ t)

So Yn and Xn have the same distribution. Similarly Y and X also have the same distribution.
All that is left to show is that Yn converges almost surely to Y . By assumption, any t ∈ R
is a continuity point of F (since they are continuous by assumption), we have Fn(t) → F (t)
by definition. So take tn = F−1

n (p) = Yn(p) and t = F−1(p) = Y (p). So Fn(tn) = p = F (t)
and Fn(t) → F (t) = p. We need to show tn → t.
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Fix ε > 0 and pick t− 2ε < z < t− ε. If tn < t− 2ε infinitely often, then Fn(tn) ≤ Fn(z)
infinitely often by monotonicity. But Fn(z) → F (z) by continuity and F (z) < F (t)−δ = p−δ
for some δ > 0 by strict monotonicity. Thus Fn(tn) < p − δ infinitely often, which is a
contradiction since Fn(tn) = p for all n. One can similarly show that tn > t + 2ε infinitely
often leads to a contradiction. Since ε is arbitrary, tn → t.

Exercise 4.12. Read the proof of the general case from Addario–Berry’s notes http://

problab.ca/louigi/courses/2019/math587/587notes.pdf Theorem 3.10.

Remark 4.13. The joint law of Yns are no longer necessarily equal to the joint law of
Xn, if specified. The main application of Skorokhod representation is to recover some the-
orems about distributions of Xn which only assumed almost sure convergence before (like
DCT, Fatou etc.) in situations where almost sure convergence is replaced by distributional
convergence or convergence in probability.

We now state a couple of applications of Skorokhod representation theorem.

Lemma 4.14 (Fatou’s lemma). Suppose Xn ≥ 0 for all n and Xn → X in probability. Then

lim inf
n

E(Xn) ≥ E(lim inf
n

Xn)

Proof. Apply Skorokhod, use the previous Fatou (2.3), and conclude.

Proposition 4.15. Xn
(d)−−−→

n→∞
X if and only if for every bounded continuous function f :

R 7→ R, E(f(Xn)) → E(f(X)) as n → ∞ (where the expectations are taken with respect to
the respective probability spaces if the variables are defined on different probability spaces).

Proof sketch. Xn
(d)−−−→

n→∞
X, lift to a space with random variables Yn, Y defined on them

having the same distribution as Xn, X respectively so that Yn converges to Y almost surely.
By Dominated convergence theorem, E(f(Yn)) → E(f(Y )). We conclude since E(f(Xn)) =
E(f(Yn)) and E(f(Y )) = E(f(X)) as they have the same distribution.

For the converse, note that we need to show that for every continuity point of FX ,
E(1Xn≤x) → E(1X≤x). Thus we need to use the bounded function f(y) = 1y≤x for y ∈ R.
Unfortunately this function is not continuous. So there is some work needed to approximate
it by a bounded continuous function and take limit, which we skip (one way is to convolve
it with a bump function).

4.3 Kolmogorov 0-1 law.

We start with the picture of Andrey Nikolaevich Kolmogorov, who can be safely considered
to be one of the founding fathers of probability theory. He had a pretty wild life, check out
the wiki page for a quick idea.

Suppose we have a countable collection of random variables {Xn : n ≥ 1} defined on a
probability space {Ω,F ,P}. First, we need to introduce a special σ-algebra T ⊂ F called
the tail σ-algebra. This brings us to the following definition.
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Figure 3: Andrey Nikolaevich Kolmogorov 1903-87.

Definition 4.16 (Tail σ-algebra). Given {Xn : n ≥ 1}, the tail σ-algebra is given by⋂
n≥1

σ({Xm : m ≥ n}) =
⋂
n≥1

σ(Xn, Xn+1, . . .).

What kind of events are there in this σ-algebra.

• The event
L := {ω : limXn exists }

is in T . The “hand wavy” argument is that pick any any ω ∈ L and change the values
of of the sequence {Xn(ω)} (to anything) for finitely many indices n. Then ω is
still in L . Conversely, pick any any ω /∈ L and change the values of of the sequence
{Xn(ω)} (to anything) for finitely many indices n. Then ω is still ̸∈ L . In other
words, the values of Xn for finitely many n does not determine whether the limit exists
or not.

• The same logic gives
{ω : Xn(ω) = 0 infinitely often}

is in T .

• In fact for any sequence of Borel sets Bn ∈ B, we have

{ω : Xn(ω) ∈ Bn infinitely often}

is in T .

Exercise 4.17. Prove that the two examples above form examples of tail events.
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Theorem 4.3. Suppose {Xn}n≥1 is a collection of independent random variables. Let
A ∈ T where

T =
⋂
n≥1

σ(Xn, Xn+1, . . .)

is the tail σ-algebra. Then P(A) is either 0 or 1.

Proof. Notice for any n ≥ 1, A ∈ σ(Xn+1, Xn+2, . . .) and hence is independent of all events
in σ(X1, . . . , Xn). Since this is true for any n, A is independent of every event in G :=⋃

n≥1 σ(X1, . . . , Xn). In particular, by Proposition 3.2, we see that A is independent of every
event in σ(

⋃
n≥1 σ(X1, . . . , Xn)).

But T ⊂ σ(G). Thus A ∈ σ(G) as well. So A is independent of itself, in particular,

P(A ∩ A) = P(A)P(A) = P(A) =⇒ P(A)(1− P(A)) = 0 =⇒ P(A) ∈ {0, 1}.

which completes the proof.

Example 4.18. If {Xn}n≥1 are not independent, then there is no 0-1 law. For example
let X ∼ Bernoulli (1/2). Then if with prob 1/2, Xn = X for all n and with prob. 1/2
Xn = 1−X, then the event {Xn = 1 for infinitely many n} has prob 1/2 (Xn is either all 1
with prob. 1/2 and all 0 with prob. 1/2.)

Example 4.19. Suppose {Xn} is a collection of independent random variables. Let Sn =∑n
k=1Xk. Then {lim supSn/n ≥ x} for any x ∈ R is a tail event hence by Kolmogorov’s 0-1

law
P(lim supSn/n ≥ x) ∈ {0, 1}.

Let x+ = sup{y : P(lim supSn/n ≥ y) = 1}. By definition, for y > x+, P(lim supSn/n ≥
y) = 0. Thus P(lim supSn/n = x+) = 1, or in other words, lim supSn/n is a constant almost
surely.

5 Lp spaces

We cover a bit of the theory of Lp-spaces here. For p ≥ 1, define the Lp-norm of X as

∥X∥p = (E(|X|p))
1
p . (5.1)

As we will see later, this is indeed a norm in the usual sense for p ≥ 1. We denote the set
of all random variables X defined on the probability space (Ω,F ,P) with finite Lp-norm as
the Lp-space. The notation is X ∈ Lp(Ω,F ,P). For p = ∞, we set (this is the L∞-norm)

∥X∥∞ = inf{λ : |X| < λ, almost surely}.

Lemma 5.1. For 1 ≤ p ≤ q, if X ∈ Lq then X ∈ Lp. In this sense, the Lp spaces are
nested.
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Proof. This is an application of Jensen for the convex function x 7→ x
q
p .

We state a basic theorem of functional analysis which we will not prove here.

Proposition 5.2. For p ≥ 1, and a probability space (Ω,F ,P), Lp-space is a Banach space.
That is,

• ∥X∥p = 0 implies X = 0 almost surely.

• ∥aX∥p = |a|∥aX∥p for any a ∈ R.

• ∥X + Y ∥ ≤ ∥X∥+ ∥Y ∥.

• The space is complete. This means that if {Xn} is a Cauchy sequence (i.e. for all
ε > 0, ∥Xn −Xm∥ < ε for all large enough m,n) then there exists an X ∈ Lp so that
∥Xn −X∥p converges to 0 as n → ∞.

Proof. Look at Section 9 of http://problab.ca/louigi/courses/2019/math587/587notes.
pdf.

Definition 5.1 (Lp-convergence). For any p > 0, we say that a sequence Xn converges in
Lp to X if E(|Xn −X|p) → 0 as n → ∞.

For p ≥ 1, Xn converges to X in Lp is equivalent to saying that ∥Xn − X∥p → 0. The
notation is

Xn
n→∞−−−→
Lp

X.

Proposition 5.3. If Xn → X in Lp for some p > 0 then Xn → X in probability.

Proof. Fix ε > 0. Then

P(|Xn −X| > ε) = P(|Xn −X| > ε) ≤ E(|Xn −X|p)
εp

→ 0

by Markov’s inequality.

Convergence in Lp does not guarantee almost sure convergence. For example, let ξn ∼
i.i.d. Bernoulli(1/n). We showed in (4.1) that ξn does not converge to 0 almost surely but
ξn → 0 in Lp (easy exercise). On the other hand, convergence in probability does not
guarantee Lp convergence.

Exercise 5.4. Let ξn/n ∼ Bernoulli(1/n). Then show that E(ξpn) ̸→ 0 for any p ≥ 1 but
ξn → 0 in probability.

We finish with two very useful inequalities. The proof involves some tricky version of
Jensen. See Theorem 9.3 of Addario–Berry’s notes for a proof. 16.

16http://problab.ca/louigi/courses/2019/math587/587notes.pdf
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Proposition 5.5. Suppose 1 ≤ p, q ≤ ∞ (note the equality to ∞) with 1
p
+ 1

q
= 1. Then for

any two random variables X, Y defined on a common probability space,

∥XY ∥1 ≤ ∥X∥p∥Y ∥q (5.2)

This is called Hölder’s inequality For p = q = 2, this inequality is called Cauchy–
Schwarz inequality.

∥XY ∥1 ≤ ∥X∥2∥Y ∥2 or equivalently E(|XY |) ≤
√
E(X2)E(Y 2) (5.3)

The right hand side is used more commonly.

5.1 Geometric structure of L2

We now focus on the special case of L2 spaces. As it turns out, this is a Hilbert space, so
we can talk about angles. To that end we define the inner product

⟨X, Y ⟩ = E(XY ), X, Y ∈ L2

The right hand side is finite by Cauchy–Schwarz inequality. We can define the angle in the
sense that the angle between X and Y is measured as θ ∈ [0, π)

cos(θ) =
⟨X, Y ⟩

∥X∥2∥Y ∥2
So for example

∥X + Y ∥22 = E(X + Y )2 = E(X2) + E(Y 2) + 2E(XY ) = ∥X∥22 + ∥Y ∥22 + 2⟨X, Y ⟩.

This gives the parallelogram law

∥U + V ∥22 + ∥U − V ∥22 = 2(∥U∥22 + ∥V ∥22). (5.4)

Theorem 5.1 (Projection theorem). Let G ⊂ F be a sub σ-field of F . For every X ∈
L2(Ω,F ,P), there is an (almost surely) unique random variable Y ∈ L2(Ω,G,P) such that

∥X − Y ∥2 = inf
Z∈L2(Ω,G,P)

∥X − Z∥ =: ∆.

Furthermore, Y is the minimizer (i.e. ∥X − Y ∥ = ∆) if and only if ⟨X − Y, Z⟩ = 0 for all
Z ∈ L2(Ω,G,P).

Proof. Let
∆ = inf

Z∈L2(Ω,G,P)
∥X − Z∥.

Take a sequence of random variables Yn ∈ L2(Ω,G,P) such that ∥Yn − X∥ = ∆ + 1
n
. Now

apply the parallelogram law (5.4) with

U + V = X − Ym U − V = X − Yn.
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which gives

∥X − Ym∥22 + ∥X − Yn∥22 = 2∥X − Yn + Ym

2
∥22 + ∥Ym − Yn∥22.

Note ∥X−Ym∥22 ≤ (∆+ 1
m
)2, and ∥X−Ym∥22 ≤ (∆+ 1

m
)2, also 2∥X− Yn−Ym

2
∥22 ≥ 2∆2. Thus

∥Ym − Yn∥22 ≤ (∆ +
1

m
)2 + (∆ +

1

n
)2 − 2∆2 = 2∆(

1

n
+

1

m
) + 2(

1

m2
+

1

n2
).

The right hand side converges to zero for n > m → ∞ . Thus, Ym is a Cauchy sequence and
it converges to a Y in L2(Ω,G,P) by completeness. This Y is the required Y . Indeed, by
the triangle inequality,

∆ ≤ ∥X − Y ∥ ≤ ∥X − Yn∥+ ∥Yn − Y ∥ ≤ ∆+
1

n
+ ∥Yn − Y ∥ → ∆.

where the leftmost inequality is by definition of ∆.
Now suppose Z is another random variable with ∆ = ∥X−Z∥. Then by the parallelogram

law,

2∆2 = ∥X − Y ∥22 + ∥X − Z∥22 = ∥2X − Y − Z∥22 + ∥Z − Y ∥22 ≥ 2∆2 + ∥Z − Y ∥22

which means ∥Z − Y ∥22 = 0 which means Z = Y almost surely.
Now suppose Y ∈ L2(Ω,G,P) is such that for any Z ∈ L2(Ω,G,P), ⟨X−Y, Z⟩ = 0. Then

for any Z ∈ L2(Ω,G,P)

∥X − Z∥22 = ∥X − Y ∥22 + ∥Z − Y ∥2 + 2⟨X − Y, Z − Y ⟩ ≥ ∥X − Y ∥2

Note that ⟨X − Y, Z − Y ⟩ = 0 as Z − Y ∈ L2(G) and the inner product of X − Y with any
element in L2(G) is assumed to be 0. So taking infimum over Z on the left hand side, we are
done.

Now for the converse, take Y to be the minimizer. Then for any Z ∈ L2(Ω,G,P),

∆2 ≤ E(X−Y−tZ)2 = E((X−Y )2)+t2E(Z2)−2tE((X−Y )Z) = ∆2+t2E(Z2)−2tE((X−Y )Z)

Thus
t2E(Z2)− 2tE((X − Y )Z) ≥ 0

This cannot hold for small t if E((X − Y )Z) ̸= 0, which concludes the proof.
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6 Conditional Expectation

The goal of this section is to make sense of the notion of conditioning by a σ-algebra. In
particular, we want to define

E(X|G)

where X is a random variable, and G is a G-algebra. Usually, G will be taken to be σ(Y )
for another random variable Y , and then E(X|σ(Y )) is the quantity we need to look at if
we want to understand Expectation of X conditioned on Y . First of all, observe that once
conditional expectation is defined, conditional distribution will fall out as the corollary of
that defintion as we can write

P(X ∈ A|σ(Y )) = E(1X∈A|σ(Y )).

Let us start with something simple. We assume that we are on the probability space
(Ω,F ,P). Let us first recall what it means to condition on an event E where P(E) > 0.
For any measurable event E, with P(E) > 0 we can define the conditional expectation of a
random variable as X conditioned on E as

E(X|E) =
E(X1E)

P(E)
. (6.1)

Note that E(X|A) is just a real number.
Now let us see how far this definition takes us through a simple example. Let a ∈ [0, 1/2].

Suppose the joint distribution of Y1, Y2 is given by the following table.

Y1 ↓ Y2 → 0 1 Marginal(Y1)
0 a 1/2− a 1/2
1 1/2− a a 1/2

Marginal (Y2) 1/2 1/2 1

Here

E(1Y1=0|Y2 = 1) = P(Y1 = 0|Y2 = 1) =
1/2− a

1/2
= 1− 2a,

E(1Y1=0|Y2 = 0) = P(Y1 = 0|Y2 = 0) =
a

1/2
= 2a.

and

P(Y1 = 1|Y2 = 1) =
a

1/2
= 2a, P(Y1 = 1|Y2 = 0) =

1/2− a

1/2
= 1− 2a.

It is reasonable to think of the ‘conditional distribution of Y1 conditioned on the random
variable Y2 (as opposed to conditioning on an event {Y2 = 0} or {Y2 = 1}) as a random
variable

P(Y1 = 0|Y2) = (1− 2a)1Y2=1 + 2a1Y2=0; P(Y1 = 1|Y2) = 2a1Y2=1 + (1− 2a)1Y2=0.

63



Here, the σ-algebra generated by Y2 is {∅, {Y2 = 1}, {Y2 = 0},Ω}. Thus both the random
variables defined in the above display is measurable with respect to Y2.

Furthermore, in both cases, observe that

E(E(1Y1=0|Y2)) = E(P(Y1 = 0|Y2)) = (1− 2a)
1

2
+ 2a

1

2
=

1

2
= P(Y1 = 0) = E(1Y1=0);

E(E(1Y1=1|Y2)) = E(P(Y1 = 1|Y2)) = 2a
1

2
+ (1− 2a)

1

2
= P(Y1 = 1) = E(1Y1=1).

Not only this, more is true:

E(E(1Y1=0|Y2)1Y2=1) = E(1Y1=01Y2=1) =
(1− 2a)

2

E(E(1Y1=0|Y2)1Y2=0) = E(1Y1=01Y2=0) =
2a

2
= a.

Let us try to generalize this idea to random variables taking more values than just {0, 1}.
If you look closely at the above examples, it is clear that conditioning on a random variable
X supported on {0, 1} is the same as conditioning on the events {X = 0}, {X = 1}, which
are the only non-trivial events present in σ(X) and are complements of each other. Thus for
a σ-algebra F := {∅, A,Ac,Ω}, we can define

Y := E(X|F) := E(X|A)1A + E(X|Ac)1Ac

This random variable satisfies the following properties (can be easily checked just like the
example above)

• Y is {F}-measurable.

• E(Y 1A) = E(X1A) for all A ∈ F .

• Taking A = Ω in the above item, we get E(Y ) = E(X).

We enlarge this idea to condition on a σ-algebra generated by finitely many events F =
σ(B1, B2, . . . , Bn) with ⊔n

j=1Bi = Ω and Bis disjoint. Namely, introduce

E(X|F) = Y =
n∑

j=1

E(X|Bj)1Bj
.

Notice that
E(X1Bj

) = E(Y 1Bj
) (6.2)

The following theorem generalizes this idea to a general σ-algebra. In particular we want
to define a random variable Y as the conditional expectation of X given a σ-algebra G to
satisfy

E(X1B) = E(Y 1B) for all B ∈ G.
It turns out that this is a strong enough property which guarantees existence of Y which is
almost surely unique. This is the content of the next theorem, and this Y will be defined to
be the conditional expectation of X given a σ-algebra G.
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Theorem 6.1. Let X ∈ L1(Ω,F ,P) and let G ⊂ F be a sub σ-algebra. Then ∃ a random
variable Y on (Ω,F ,P) such that

• Y is G-measurable.

• Y ∈ L1 (integrable) with

E(Y 1A) = E(X1A) for all A ∈ G

Note above how we require the equality for events in G only. This random variable is almost
surely unique, in the sense that if there is another random variable Z with the above two
properties then Z = Y almost surely.

Since the conditional expectation is defined only up to almost sure sets, any random variable
satisfying the two criterions in Theorem 6.1 is called a version of conditional expectation.
We write

E(X|F) = Y a.s.

Also, conditioning by a random variable is simply conditioning by the sigma algebra gener-
ated by X, denoted σ(X). So

E(Y |X) = E(Y |σ(X)).

Proof. First let us simplify our lives and assume that X ∈ L2(Ω,F ,P). Then the theorem
is an application of Theorem 5.1. Indeed, using it, find the (a.s. unique) Y such that

∥X − Y ∥2 = inf
Z∈L2(Ω,G,P)

∥X − Z∥.

We claim that Y satisfies the two assumptions. Firstly Y is G-measurable and in L2(G) by
definition. Now we write

X = X − Y + Y

Notice that

E(X1A) = E((X − Y )1A) + E(Y 1A) = ⟨X − Y, 1A⟩+ ⟨Y, 1A⟩

But again by Theorem 5.1, ⟨X − Y, 1A⟩ = 0 if A ∈ G, thereby completing the proof.
For the general case of X ∈ L1, we use the idea of truncation 17. We need the following

claim.

Claim 6.1. If X ≥ 0 a.s. and Y = E(X|G) is a version of conditional expectation (which
we assume to exist), then E(X|G) ≥ 0 almost surely.

Proof of Claim 6.1. Take B = {ω : Y < 0}. Notice that by definition of conditional expec-
tation, B ∈ G. So

0 ≤ E(X1B) = E(Y 1B)

17this is a general idea, which will be used elsewhere as well

65



where the first inequality comes from Lemma 2.12 of properties of Expectation. But note
that Y 1B ≤ 0 by definition, thus Y 1B = 0 almost surely. This means P(B) = P(Y < 0) = 0,
which is exactly the claim.

Now assumeX ≥ 0 but we assumeX ∈ L1 only. Now we look atXn = X∧n = min{X,n}
for some n ∈ N. Notice that Xn is bounded, and in particular in L2. Thus we can find a Yn

which is a version of E(Xn|G). Now we claim Yn will converge to a version of the conditional
expectation of X given G. Notice that for any A ∈ G, Xn1A ↑ X1A and by Claim 6.1, Yn is
also non-decreasing almost surely as

Yn+1 − Yn = E(Xn+1 −Xn|G) ≥ 0 a.s.

Thus Yn ↑ Y almost surely and by monotone convergence theorem,

E(Xn1A) ↑ E(X1A) and E(Yn1A) ↑ E(Y 1A).

Since E(Xn1A) = E(Yn1A) for all A ∈ G, E(X1A) = E(Y 1A) for all A ∈ G. Since X is
integrable, we also have Y is integrable simply by plugging in A = Ω in this equation.

For general X, not necessarily non-negative, apply the same argument separately to X+

and X− and then obtain versions of conditional expectation Y + and Y −. By linearity of
expectation, we conclude that Y := Y + − Y − is a version of the conditional expectation.

For uniqueness, assume Z is another such random variable. Let A = {Z < Y } which is
in G since both Z, Y are G-measurable. Then

E(Y 1A) = E(X1A) = E(Z1A) =⇒ E((Y − Z)1A) = 0

which means that Y ≤ Z = 0 almost surely by definiton of A. By symmetry, Z ≤ Y a.s. as
well and thus Y = Z a.s.

Example 6.2. Suppose X ∼ Bernoulli (Θ) where Θ = 1/2 with prob. 1/4 and Θ = 1/3
with prob. 3/4. Let us calculate E(X|Θ). Note σ(Θ) = σ({Θ = 1/2}, {Θ = 1/3}). Thus on
{Θ = 1/2}, E(X|Θ) = 1/2 and on {Θ = 1/3}, E(X|Θ) = 1/3. In other words, E(X|Θ) = Θ
almost surely.

Proposition 6.3 (Properties of conditional expectation). Suppose X is defined on (Ω,F ,P)
and G ⊂ F . Then,

a. Suppose X ≥ 0 a.s. and X ∈ L1 and Y = E(X|G) is a version of conditional expectation,
then E(X|G) ≥ 0 almost surely.

b. If a, b ∈ R, then E(aX + bY |G) = aE(X|G) + bE(Y |G) a.s.

c. X ≥ Y a.s. implies E(X|G) ≥ E(Y |G).

d. (Conditional Jensen) For any convex function φ with E(|φ(X)|) < ∞ or if φ is non-
negative, E(φ(X)|G) ≥ φ(E(X|G)). In particular, for φ(x) = |x|, E(|X||G) ≥ |E(X|G)|
a.s.
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e. E(E(X|G)) = E(X).

f. If X is G-measurable, then E(X|G) = X a.s.

g. If X is independent of G, then E(X|G) = E(X) a.s.

Proof. a. Since Claim 6.1 was only used for bounded random variables in the previous proof,
this item follows.

b. This follows immediately from the linearity of usual expectation. (Exercise)

c. This follows by applying a. with X − Y and using linearity of conditional expectation.

d. This follows by repeating the proof of unconditional Jensen (Proposition 2.4). (Exercise:
figure out the details)

e. Use the definition of conditional expectation for the set A = Ω.

f. Follows immediately from the definition (Exercise: convince yourself.)

g. Take A ∈ G. By independence,

E(X1A) = E(X)E(1A) = E(E(X)1A).

Thus E(X) is a version of conditional expectation of X given G.

Proposition 6.4. Suppose {Xn}n≥1 is defined on (Ω,F ,P) and G ⊂ F . Then,

a. (Conditional MCT) If Xn ≥ 0 and Xn ↑ X a.s. then

E(Xn|G) ↑ E(X|G)

b. (Conditional Fatou’s lemma) If Xn ≥ 0 then

lim inf
n

E(Xn|G) ≥ E(lim infXn|G).

c. (Conditional DCT) If |Xn| ≤ Y for some random variable Y almost surely for all n ≥ 1,
with E(Y ) < ∞ and Xn → X almost surely, then

lim
n

E(Xn|G) → E(X|G).

Proof. These proofs follows more or less in the same way as in the unconditional case, the
additional ingredient needed are the basic properties of conditional expectation outlined in
Proposition 6.3. We leave this as an exercise and move on for now.
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Proposition 6.5 (Tower property: smaller σ-algebra wins). Let H ⊂ G and X ∈ L1(Ω,F ,P).

E(E(X|G)|H) = E(E(X|H)|G) = E(X|H) almost surely.

Here is a rewriting of the above which might be easier to the eye. Let H = E(X|H) and
G = E(X|G) then

E(G | H) = E(H | G) = H almost surely

Proof. Notice that H is H-measurable, and hence G-measurable. Thus E(H|G) = H almost
surely. On the other hand, for any A ∈ H ⊂ G,

E(E(G | H)1A) = E(G1A) = E(X1A)

By uniqueness, E(G | H) = E(X|H) almost surely.

Proposition 6.6. Suppose X ∈ L1(F) and G ⊂ F be a σ-algebra. Then if Y is G-measurable
random variable, then

E(XY |G) = Y E(X|G) almost surely

(Conditioned on G, Y becomes “non random”).

Proof. The proof goes through a standard technique called measure theoretic induction.
Namely, we start with Y = 1A. Since Y is G-measurable, we must have A ∈ G. Thus for
any B ∈ G by definition, Thus

E(Y E(X|G)1B) = E(E(X|G)1A∩B) = E(X1A∩B) = E((X1B)1A) = E(Y X1B)

The second equality holds since A ∩ B ∈ G. Also since the above equality holds for all B,
we have Y E(X|G) = Y X almost surely, by the uniqueness of conditional probability. By
linearity of conditional expectation, (item b. of Proposition 6.3), we have that the equality
holds for any simple function.

Now for Y ≥ 0, take a sequence of simple functions Yn ↑ Y (using, e.g., Lemma 2.4).
Now by conditional monotone convergence theorem and the previous step, (item a, Propo-
sition 6.4), we have E(XY |G) = E(Y E(X|G)).

Finally for any Y , break up as Y = Y + − Y −, and use the previous step.

Remark 6.7. This general technique is called measure theoretic induction.

Exercise: Fill in the details above.

Using Proposition 6.6, and the fact that E(E(Z|G)) = E(Z), we have

Lemma 6.8. If Y is G-measurable,

E(XY ) = E[E(XY |G)] = E(Y E(X|G)).

Measure theoretic induction is a pretty robust technique. For example, we can get the
following equivalent definition of conditional expectation.
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Lemma 6.9 (Alternate definition of conditional expectation.). Y is a version of E(X|G) if
and only if

E(Y Z) = E(XZ)

for all Z which is G-measurable and bounded.

Proof Sketch. Of course if this statement is true then just by plugging in Z = 1A for A ∈ G
works. For the other direction, use measure theoretic induction. (Exercise).

6.1 (Absolutely) continuous random variables

Recall that we say a random variable X is continuous if there is a measurable function
fX : R 7→ R (called its density) such that for all A ∈ B(R), we have

µX(A) = P(X ∈ A) =

∫
A

fX(t)dt.

Recall from Proposition 2.19 that if g is a measurable random variable and X has density
fX , then

E(g(X)) =

∫
R
g(t)fX(t)dt.

Now we state a very useful theorem (without proof) called Fubini’s theorem. It essentially
says that we can exchange the integrals under certain conditions. Recall that if µ, ν are
probability measures on (Ω1,F1) and (Ω2,F2), then µ⊗ ν is a probability measure on (Ω,G)
where Ω = Ω1 × Ω2 and G = σ(F1 ×F2), where

µ⊗ ν((A,B)) = µ(A)ν(B)

For example, if µ = ν = Lebesgue measure on [0, 1] then µ⊗ ν((a, b), (c, d)) = (b− a)(d− c).

Theorem 6.2 (Fubini’s theorem). Let (Ω1,F1, µ) and (Ω2,F2, ν) be two probability spaces.
Let (Ω,G, µ ⊗ ν) be the product space described as above. Then for any f : Ω → R, with
either

∫
Ω
|f |d(µ⊗ ν) < ∞ or f ≥ 0,∫

Ω

f(x, y)d(µ⊗ ν)(x, y) =

∫
Ω1

(∫
Ω2

f(x, y)dν(y)

)
dµ(x)∫

Ω2

(∫
Ω1

f(x, y)dµ(y)

)
dν(x)

We say (X, Y ) are jointly continuous, simply if they have a joint density function fX,Y

such that for all A ∈ B(R2)

P((X, Y ) ∈ A) =

∫
A

fX,Y (x, y)dxdy
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where “dxdy” can be short for Lebesgue measure in R2. It coincides with the “usual”
Riemann integral taught in calculus courses. It is easy to see that the marginal density of
Y can be written as fY (y) =

∫
R fX,Y (x, y)dx, since

P(Y ∈ A) = P((X, Y ) ∈ A× R) =
∫
A

(∫
R
fX,Y dy

)
dx

Now we want to find a concrete expression for E(h(X)|Y ) where (X, Y ) are jointly con-
tinuous.

Proposition 6.10 (Conditional density). Suppose (X, Y ) are jointly continuous. Let us
define for every y ∈ R

fX|y(x) =

{
fX,Y (x,y)

fY (y)
if fY (y) > 0

0 otherwise
(6.3)

Then

E(h(X)|Y ) =

∫
R
h(x)fX|Y (x)dx almost surely.

(Note that y changed to the random variable Y in the subscript of f).

Proof. Let N := {y : fY (y) = 0}. Since

P(Y ∈ N ) =

∫
0dy = 0

Let A = {Y ∈ B} and assume A ⊂ {Y ∈ N}. By Fubini,

E(h(X)1A) =

∫
R

∫
R
h(x)fX,Y (x, y)1y∈Bdxdy =

∫
R

(∫
R
h(x)

fX,Y (x, y)

fY (y)
dx

)
1y∈BfY (y)dy = E(E(h(X)|Y )1A)

Note E(h(X)|Y ) is σ(Y )-measurable, hence we can write E(h(X)|Y )1A = ϕ(Y )1Y ∈B. And
hence using Theorem 2.18,

E(E(h(X)|Y )1A) =

∫
ϕ(y)1y∈BfY (y)dy.

By uniqueness of conditional expectation

ϕ(Y ) =

∫
R
h(x)

fX,Y (x, Y )

fY (Y )
dx

almost surely. Therefore, fX|Y (x) is justifiably the “density” of the random variable X
conditioned on Y , sometimes called the conditional density.

Since {Y ∈ N} is a null-set, we can define a version of conditional expectation E(h(X)|Y )(ω) =
0 for ω ∈ {Y ∈ N}. Then for any Borel B. and A = {Y ∈ B},

E(h(X)|Y )1A = E(h(X)|Y )1A∩{Y ̸∈N},

and get back the above formula.
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7 Martingales

Let (Xn)n≥1 be a collection of random variables defined on a probability space (Ω,F ,P).
We sometimes call this collection a stochastic process where we think of n as a ‘time
step’. A stochastic process is integrable if E(|Xn|) < ∞ for all n ≥ 1. A filtration is an
non-decreasing sequence of sigma algebras F1 ⊆ F2 ⊆ . . .F . A stochastic process (Xn)n≥1

generates a natural filtration FX
n := σ(X1, . . . , Xn). In particular, Xn is FX

k measurable for
all k ≥ n. Conversely, given a filtration (Fn)n≥1, we say a stochastic process (Xn)n≥1 is Fn

adapted if Xn is Fn measurable for all n ≥ 1. A probability space with a filtration is called
a filtered space.

Definition 7.1. A stochastic process (Xn)n≥1 defined on a filtered probability space (Ω,F , (Fn)n≥1,P)
is a martingale (resp. submartingale, resp. supermartingale) if it is integrable, Fn-adapted
and E(Xn+1|Fn) = Xn (resp. ≥ Xn, resp. ≤ Xn) a.s. for all n ≥ 1.

Using the tower property, actually one gets that E(Xn+1|Fm) = Xm (resp. ≥ Xm, resp.
≤ Xm) a.s. for all m ≤ n if Xn is a martingale (resp. submartingale, resp. supermartingale).
(Exercise: prove it.)

In a typical situation, the filtration is taken to be FX
n = σ(X1, . . . , Xn). In this case, we

say the Martingale is adapted to the filtration generated by itself.

Example 7.2. Suppose X1, X2, . . . ∼i.i.d. with E(X1) = 0. Then (Sn)n≥1 is a martingale
with respect to the filtration generated by the Xns. Indeed E(Sn+1|Fn) = E(Sn+Xn+1|Fn) =
Sn a.s. using the fact that Sn is Fn-measurable and Xn+1 is independent of Fn. In fact show
using the same ideas that

Exercise 7.3. Tn =
∑n

k=1HkXk is a martingale where Hk is Fk−1-measurable.

The martingale Tn has an interpretation in terms of gambling. Suppose Bob the gambler
enters the casino which plays the fair game(!) in the sense that in each game, if Bob bets
a dollars then he gets back 2a dollars with prob. 1/2 and loses the a dollars with prob.
1/2, independently of what has happened in the past. Suppose in the nth step, Bob bets an
amount which depends on what has happened in the first n−1 steps (in other words, Bob tries
to come up with a strategy). This setup can be modelled by the martingale Tn. Indeed, in
step n, Bob strategises and places a bet of Hn dollars and we assume Hn = σ(X1, . . . , Xn−1).
Thus his winning in nth step is HnXn where Xn = 1 or −1, each with prob. 1/2 and
X1, . . . , Xn are independent. Thus Bob’s total winning after n steps is

∑n
k=1HkXk.

Exercise 7.4. Suppose E(|Y |) < ∞ and Fn is a filtration. Then show that Xn = E(Y |Fn)
is a Martingale. (Use the tower property)

Going back to Exercise 7.3, one can ask that if Bob starts with x dollars, and stops when
he either wins a Million dollars or goes broke, what is his expected winning when he stops.
Note that he stops at a random time which depends on potentially infinitely many random
variables. An important concept we need to introduce in order to formalize this idea is the
notion of a stopping time.

71



Definition 7.5. Let (Ω,F , (Fn)n≥1,P) be a filtered probability space. A random variable

T : Ω 7→ {1, 2, . . . , } ∪ {∞}

is a stopping time if for all n ≥ 1, {T ≤ n} ∈ Fn.
For a stochastic process (Xn)n≥1, we say T is a stopping time if it is a stopping time for

the filtration generate by the process.

Note that we allow T = ∞, so this random variable is defined on the so-called ‘extended
real line’. This causes some minor technicalities with the definitions of measurability, but
for the sake of brevity, we ignore them for now.

Example 7.6. Suppose A is a Borel set and let T = inf{k ≥ 1, Xk ∈ A}. Then T is
a stopping time with respect to the filtration generated by (Xn)n≥1. Indeed, {T ≤ n} =
∪n

i=1{Xi ∈ A} ∈ Fn since {Xi ∈ A} ∈ Fi ⊆ Fn.
On the other hand, convince yourself that T = sup{k : Xk ∈ A} is not a stopping time.

Exercise 7.7. Let T be a stopping time. Then T ∧ n := min{T, n} is also a stopping time.

Now we define the notion of a stopped sigma algebra.

Definition 7.8. Let T be a stopping time. A stopped sigma algebra is defined as

FT := {A ∈ F : A ∩ {T ≤ n} ∈ Fn for all n ≥ 1}.

For all ω such that T (ω) < ∞, define XT (ω) = XT (ω)(ω).

Definition 7.9. Let T be a stopping time. Then a stopped process is defined as (XT
n )n≥1 =

(XT∧n)n≥1.

Now we note a few properties of stopping times.

Lemma 7.10. If S ≤ T a.s. be stopping times, FS ⊆ FT .

Proof. Since S ≤ T a.s., {T ≤ n} ⊆ {S ≤ n} and hence {T ≤ n} = {T ≤ n} ∩ {S ≤ n}.
Thus for any A ∈ FS,

A ∩ {T ≤ n} ⊆ A ∩ {S ≤ n} ∩ {T ≤ n}

since A ∩ {S ≤ n} ∈ Fn and {T ≤ n} ∈ Fn, A ∩ {T ≤ n} ∈ Fn. Thus A ∈ FT and we are
done.

Lemma 7.11. {T = k} ∈ Fk if T is a stopping time.

Proof. Note {T = k} = {T ≤ k} ∩ ({T ≤ k − 1})c. Since the first event on the right hand
side is in Fk and the second is in Fk−1 ⊆ Fk, we are done.

Lemma 7.12. Suppose (Xn)n≥1 be an Fn-adapted process and T is a stopping time. Then
XT1T<∞ is FT measurable.
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Proof. We need to show that for any A Borel,

{XT1T<∞ ∈ A} ∈ FT

or equivalently, {XT1T<∞ ∈ A, {T ≤ n}} ∈ Fn. Note that this event is equal to

∪n
i=1{XT1T<∞ ∈ A, {T = i}} = ∪n

i=1{Xi ∈ A, {T = i}}

since the event inside the union is in Fi ⊆ Fn for all i ≤ n, we are done.

Lemma 7.13. Suppose (Xn)n≥1 is (Fn)n≥1-adapted and T is a stopping time. Then (Xn∧T )n≥1

is also (Fn)n≥1-adapted. Furthermore, If E(|Xn|) < ∞ then E(|Xn∧T |) < ∞.

Proof. Using Exercise 7.7, T ∧n is a stopping time which is a.s. finite. Thus by Lemma 7.12
XT∧n is FT∧n-measurable. Thus for k ≤ n,

{T ∧ n ≤ k} = {T ≤ k}

and if k > n, P({T ∧ n ≤ k}) = 1. Thus for any Borel A,

{XT∧n ∈ A} = ∪n−1
k=1{Xk ∈ A, T = k} ∪ {Xn ∈ A, T ≥ n}

Note Xk ∈ A ∈ Fk, T = k ∈ Fk, and T ≥ n ∈ Fn. Using these facts we can conclude that
XT∧n ∈ A ∈ Fn as desired.

For integrability, note that |XT∧n| ≤ |X1|+ . . .+ |Xn|. From this integrability follows.

7.1 Optional stopping theorem

Note that if Xn is a martingale, then E(Xn) = E(Xn−1), taking expectation on both sides
of E(Xn|Fn−1) = Xn−1. This immediately yields that E(Xn) = E(X0). Optional stopping
theorem will tell us the conditions under which E(XT ) = E(X0) if T is a stopping time.

Example 7.14. We give a simple example to illustrate that E(XT ) = E(X0) is not true
in general. Take X0 = 0 and X1, X2, . . . i.i.d. with X1 = ±1 with prob. 1/2 each. Let
T = min{k ≥ 1, Sk = 10} where Sk = X1 + X2 + . . . + Xk. Then it can be shown that
T < ∞ a.s. (this follows from the fact that a random walk on Z hits every point a.s.) and
E(ST ) = 10 ̸= 0. The issue here is that E(T ) = ∞.

In the next theorem, we list several conditions under which we can conclude E(XT ) =
E(X0) for a stopping time T .
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Theorem 7.1. Let (Xn)n≥0 be a martingale defined on a filtered probability space
(Ω, (Fn)n≥1,F ,P). Let T be a Fn-stopping time.

(1) The process (XT
n )n≥1 = (Xn∧T )n≥1 is an (Fn)-adapted martingale. (In particular,

E(Xn∧T ) = E(X0) for all n ≥ 1.)

(2) If S ≤ T a.s. and T is bounded a.s (i.e. ∃M > 0 such that T < M a.s.) then
E(XT |FS) = XS a.s. In particular, E(XT ) = E(XS) (take S = 0 to get E(XT ) =
E(X0)).

(3) If E(T ) < ∞ and ∃C > 0 such that

E(|Xn+1 −Xn||Fn)1T>n ≤ C a.s.

Then E(XT ) = E(X0).

(4) If T < ∞ a.s. and ∃C < ∞ such that |Xn∧T | < C a.s. for all n ≥ 1, then E(XT ) =
E(X0).

If Xn is a sub( resp. super) martingale, then (1) is true by replacing martingale by sub (resp.
super) martingale, (2), (3), (4) is true by replacing = by ≥ (resp. ≤)

Proof. We prove each item separately.

Proof of (1) Note that

E(Xn∧T |Fn−1) = E(
∑
k≥1

Xn∧T1T=k|Fn−1) = E(
n−1∑
k=1

Xk1T=k|Fn−1) + E(Xn1T≥n|Fn−1)

Now observe that {T ≥ n} = {T ≤ n− 1}c ∈ Fn−1 and Xk1T=k is Fk measurable. Thus

E(
n−1∑
k=1

Xk1T=k|Fn−1) + E(Xn1T≥n|Fn−1)

=
n−1∑
k=1

Xk1T=k + 1T≥nE(Xn|Fn−1) =
n−1∑
k=1

Xk1T=k + 1T≥nXn−1 = Xn−1∧T ,

as desired.

74



Proof of (2) Assume S ≤ T < M a.s. First we breakup XT as follows

XT = XS + (XT −XS)

= XS +
M−1∑
k=0

(XT −XS)1S=k<T

= XS +
M−1∑
k=0

(Xk+1 −Xk)1S≤k<T

Now take A ∈ FS. Note that it is enough to show that {S ≤ k < T} ∩ A ∈ Fk for all k, as
then by the definition of conditional expectation

E(XS)1A+E(
M−1∑
k=0

(Xk+1−Xk)1S≤k<T1A) = E(XS)1A+
M−1∑
k=0

E((Xk+1−Xk)|Fk)1S≤k<T1A) = E(XS)1A.

(7.1)
and consequently E(XT1A) = E(XS1A) for all A ∈ FS which implies E(XT |FS) = XS a.s.
Now let us prove that {S ≤ k < T} ∩ A ∈ Fk. Note {S ≤ k} ∩ A ∈ Fk as A ∈ FS and
{T > k} ∈ Fk−1 ⊆ Fk. This completes the proof.

Proof of (3). Note that by (1), E(Xn∧T ) = E(X0) for every n ≥ 1, and Xn∧T → XT a.s.
as T < ∞ a.s. The strategy is to employ Dominated convergence theorem. Note that

Xn∧T = X0 +
n−1∑
k=0

(Xk+1 −Xk)1T>k

Thus

|Xn∧T | ≤ |X0|+
∞∑
k=0

|(Xk+1 −Xk)|1T>k a.s.

Now note {T > k} ∈ Fk−1. Thus

E(|(Xk+1 −Xk)|1T>k|Fk) = 1T>kE(|(Xk+1 −Xk)||Fk) ≤ C1T>k.

by the hypothesis. Plugging this back in, and using MCT (see, for example, Lemma 2.27),

|X0|+
∞∑
k=0

|(Xk+1 −Xk)|1T>k ≤ E(X0) +
∑
k≥1

CE(1T>k) ≤ E(|X0|) + E(T ) < ∞.

by hypothesis. Thus by DCT, E(X0) = E(Xn∧T ) → E(XT ), and we are done.

Proof of (4). Thus immediately follows from DCT. Left as an exercise.

We now present some applications.
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Proposition 7.15 (Wald’s identity). Suppose X1, X2, . . . are i.i.d. with E(X1) = µ < ∞ and
T is a stopping time with respect to the filtration generated by Xis. Suppose Sn =

∑n
i=1 Xi

and E(T ) < ∞. Then
E(ST ) = µE(T ).

Proof. Note that Zn := Sn−nµ is a martingale. It is an exercise to check that condition (3) of
Theorem 7.1 is satisfied by Zn. Hence using the Optional stopping theorem, E(ZT ) = E(Z0)
which means E(ST ) = µE(T )

We now get back to the gambler’s example from Exercise 7.3. Assume that the Gambler
starts with x dollars and let us assume that the gambler bets only 1 dollar per bet. Let
T = inf{k ≥ 1, Sk ∈ {0,M}} where 0 < x < M . By Example 7.6, we already know that
T is a stopping time. Note that |Sn∧T | ≤ M . To apply item (4), we need the additional
fact that T < ∞ a.s. There are many ways to show this, essentially it follows from the fact
that simple random walk in Z is recurrent, i.e., it visits every vertex with a.s. However here
is a way to prove this. Divide N = ∪Ii where Ii = {Mi + 1, . . . ,Mi +M}. Note that the
probability that all the outcomes of times in Ii is +1 is (1

2
)M . Also if any such event occurs,

the gambler hits M and hence T < ∞. By Borel Cantelli, one of these events occur a.s.
(Exercise).

Applying item (4) of the Optional stopping theorem, we conclude that E(ST ) = E(S0) =
x. Note that we can find the distribution of ST from this fact:

E(ST ) = 0× P(ST = 0) +M × P(ST = M) = x =⇒ P(ST = M) =
x

M
.

7.2 Martingale convergence theorem

We now state the Martingale convergence theorem which illustrates the power of Martingale
theory.

Theorem 7.2. Let (Xn)n≥0 be a supermartingale that is uniformly bounded in L1, i.e.,
∃M > 0 such that E(|Xn|) ≤ M for all n ≥ 1. Then Xn → X∞ a.s. for a random variable
X∞. Furthermore X∞ ∈ L1.

The proof of Theorem 7.2 uses a fact from real analysis which gives a (technical) necessary
an sufficient condition for a sequence to converge. Essentially the condition is the following:
take any a < b. If a real sequence (xk)k≥1 converges, it must be the case that the sequence
xk does not oscillate to be above a or below b infinitely many times. This motivates the
following definition. Let N0 = −1 and for k ≥ 1

N2k−1 = inf{m ≥ N2k−2, xm ≤ a} (7.2)

N2k = inf{m ≥ N2k−1 : xm ≥ b}. (7.3)

The number of upcrossings completed by the sequence up to time n is defined as

Un[a, b] = Un((xk)k≥1, [a, b]) = sup{k ≥ 0 : N2k ≤ n}
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Note that Un[a, b] is non-decreasing in n. We now state a lemma about deterministic se-
quences.

Lemma 7.16. Suppose (xk)k≥1 is a real sequence. Then (xk)k≥1 converges in the extended
real line R ∪ {±∞} if and only if for all rational a < b

sup
n

Un[a, b] = lim
n

Un[a, b] < ∞.

Proof sketch. If lim supxn > lim inf xn, then by choosing rationals a, b such that

lim supxn > b > a > lim inf xn

we can easily see that U [a, b] = ∞ (exercise: fill in details), a contradiction.

Lemma 7.17. Suppose Xn is an Fn-adapted submartingale and φ is a non-decreasing convex
function with E(|φ(Xn)|) < ∞. Then φ(Xn) is a submartingale.

Proof. By conditional Jensen’s inequality

E(φ(Xn+1)|Fn) ≥ φ(E(Xn+1|Fn)) ≥ φ(Xn)

since φ is non-decreasing.

As an immediate corollary we get that

Corollary 7.18. If Xn is a submartingale, then (Xn − a)+ is a submartingale. If Xn is a
supermartingale, Xn ∧ a is a supermartingale.

Proof. Exercise in application of Lemma 7.17.

Lemma 7.19. Suppose Xn is an Fn-adapted sub (resp. super) martingale and Hn is Fn−1

measurable. Then
∑n

k=1Hk(Xk −Xk−1) is a sub (resp. super) martingale.

Proof. The proof of this is exactly the same as Exercise 7.3.

Lemma 7.20 (Doob’s upcrossing lemma). Suppose Xn is a submartingale and a < b. Then

(b− a)E(Un) ≤ E(Xn − a)+ − E(X0 − a)+.

Proof. Let Yn = a+ (Xn − a)+. It is straightforward to see that the number of upcrossings
of [a, b] is the same as that of Xn. Using Lemma 7.17, Yn is a submartingale. Recall the
definitions of N2k−1, N2k from (7.2). Let Hm = 1 if N2k−1 < m ≤ N2k for some k ≥ 1 and
Hm = 0 otherwise. (That is, drawing the analogue from Exercise 7.3, we only bet when there
is an upward trend.) Let Km = 1−Hm. Note that Hm and Km are Fm−1-measurable. Also
note that Zn =

∑n
k=1(Hk(Yk − Yk−1)) and Wn :=

∑n
k=1(Kk(Yk − Yk−1)) are submartingales

by Lemma 7.19. Furthermore,
Zn ≥ (b− a)Un

77



since we gain at least (b − a) for each upcrossing, and there is a final incomplete crossing
which contributes something non-negative. However,

Yn − Y0 = Zn +Wn

Since Wn is a submartingale E(Wn) ≥ E(W0) = 0. Thus

(b− a)E(Un) ≤ E(Zn) ≤ E(Yn − Y0) = E(Xn − a)+ − E(X0 − a)+

as desired.

Proof of Theorem 7.2. Fix a < b. Note (Xn − a)+ ≤ X+
n + a. By Doob’s upcrossing

lemma, E(Un[a, b]) ≤ 1
b−a

(E(X+
n ) + |a|). Taking supremum over n on both sides, and since

supn E(X+
n ) ≤ supn E(|Xn|) < ∞, we conclude that

E(U [a, b]) < ∞

which means U [a, b] < ∞ almost surely. Taking intersection over all rationals a, b, U [a, b] <
∞ for all a, b ∈ Q almost surely. Thus by Lemma 7.16, we conclude Xn converges almost
surely, to some random variable X∞.

Now let us conclude X∞ is in L1. Note by Fatou,

∞ > lim inf
n

E(X+
n ) ≥ E(lim infX+

n ) = E(X+
∞)

For X−
∞, note that

E(X−
n ) = E(X+

n )− E(Xn) ≤ E(X+
n )− E(X0)

since Xn is a martingale tells us that E(Xn) ≥ E(X0). Using Fatou again, we conclude
E(X−) < ∞ as well.

7.3 Applications of Martingales

7.3.1 Levy’s 0-1 law

We know that E(Xn|Fm) = Xm for m ≤ n. The following corollary shows that this corollary
persists even in the limit.

Corollary 7.21. If Xn is a martingale and Xn → X in L1 then Xn = E(X|Fn).

Proof. Take A ∈ Fm. We know for all n ≥ m, E(Xn|Fm) = Xm a.s. Thus by properties of
conditional expectation

E(Xn1A) = E(Xm1A)

Also,
|E(Xn1A)− E(X1A)| ≤ E(|Xn −X|1A) ≤ E(|Xn −X|) → 0,

since Xn → X in L1. Thus E(Xm1A) = E(X1A). Since A is an arbitrary element of Fm, we
conclude using the definition of conditional expectation.
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Now we prove a nice property of the martingale from Exercise 7.4.

Theorem 7.3. Let E(|X|) < ∞. Suppose (Fn)n≥1 be an increasing sequence of σ-algebras
and F∞ = σ(∪n≥1Fn). Then

E(X|Fn) → E(X|F∞) a.s. and in L1.

Proof. We know from Exercise 7.4 that Zn := E(X|Fn) is a martingale. Also

E(|Zn|) = E(|E(X|Fn)|) ≤ E(E(|X||Fn)) = E(|X|).

Consequently Zn is uniformly bounded in L1. Applying the martingale convergence theorem
Theorem 7.2, we obtain that Zn → Z almost surely and in L1. By Corollary 7.21, E(Z|Fn) =
E(X|Fn) for all n ≥ 1. Thus for any A ∈ Fn, E(Z1A) = E(X1A) a.s. for all A ∈ ∪Fn. Thus
using the same logic as in Lemma 1.16, we conclude that E(Z1A) = E(X1A) for all A ∈ F∞
(Exercise: prove it). We conclude using the definition of conditional expectation.

One powerful consequence is the following theorem

Theorem 7.4. If Fn ↑ F∞ and A ∈ F∞ then E(1A|Fn) → 1A almost surely.

Proof. Immediately follows from Theorem 7.3 as 1A is measurable with respect to F∞.

Note that we immediately recover Kolmogorov 0-1 law from Theorem 7.4. Indeed, if A is tail
σ-algebra measurable, the it is independent of Fn for any n. So E(1A|Fn) = P(A) for all n.
On the other hand, using Levy’s 0-1 law, E(1A|Fn) → 1A ∈ {0, 1} a.s. Thus P(A) ∈ {0, 1}.

7.3.2 Branching process

Branching processes are used to model the growth of a population. Suppose we start with a
single individual of a certain specie who gives rise to Z many offsprings where Z has some
pmf given by

P(Z = i) = pi for i ≥ 0.

Call this offsprings members of generation 1. Next, each offspring of generation 1 gives rise
to a certain number of offsprings distributed as Z and these are independent of each other.
Let Xn be the number of offsprings in the nth generation for n ≥ 0 with X0 = 1.

We are interested in the question: does the specie die out? If so, can we compute/estimate
its probability?

What happens to P(Xn = 0) as n increases? Clearly if the population has died out in
step n, Xn+1 = 0 is trivially true. Thus {Xn = 0} ⊆ {Xn+1 = 0}. Thus

{Population eventually dies } = {Xn = 0 for some n ≥ 1} = ∪n≥1{Xn = 0} = lim
n→∞

{Xn = 0}.

Said otherwise, P(Xn = 0) is non-decreasing, therefore must have a limit. Let dn = P(Xn =
0) and d = limn→∞ dn. Clearly dn ∈ [0, 1] and hence so does d.

Let µ ∈ E(Z). The following observation illustrates the utility of martingales in this
setup.
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Lemma 7.22. (Xn

µn )n≥1 is a martingale which is uniformly bounded in L1.

Proof. Observe that for every n ≥ 1,

Xn =

Xn−1∑
i=1

Zn−1,i

where conditioned on Xn, (Zn−1,i)1≤i≤Xn are i.i.d. and distributed as Z. Now observe that

E(Xn|Fn−1) = Xn−1µ

and hence
E(Xn/µ

n | Fn−1) = Xn−1/µ
n−1.

As a consequence of Lemma 7.22 and theorem 7.2, we conclude

Xn

µn

n→∞−−−→
a.s.

X∞.

Martingale theory unfortunately does not tell us anything about X∞. However

Proposition 7.23. If µ < 1, X∞ = 0 almost surely.

Proof. Since E(Xn/µ
n) = E(X0) = 1, we conclude using Markov’s inequality:

P(Xn ≥ 1) ≤ µn −−−→
n→∞

0 if µ < 1.

Thus Xn → 0 in probability. Since

{Xn = 0} ↑ ∪n{Xn = 0} ⊂ {X∞ = 0}

and since P(Xn = 0) → 1, we must have P(X∞ = 0) = 1 as well.

If µ ≥ 1, it is not so straightforward to figure out what X∞ is. We do not pursue this
further in this section.

7.3.3 Discrete harmonic function

Let G = (V,E) be a finite graph and call ∂ ⊂ V the boundary of the graph. Let g : ∂ → R be
a function which is called the boundary condition. A function h : V → R is called harmonic
on (G, ∂) with boundary condition g if h(v) = g(v) for all v ∈ ∂ and

h(v) =
1

deg(v)

∑
u∼v

h(u)
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where u ∼ v means u is adjacent to v and deg(v) is the degree of v. Recall degree of a vertex
is simply the number of its neighbours.

Let (Xn)n≥1 be a simple random walk. That is, conditioned Xi = v, Xi+1 is distributed
uniformly among the neighbours of v. Let

τ = inf{k ≥ 0 : Xk ∈ ∂}.

Observe that τ is a stopping time with respect to the natural filtration generated by the
simple random walk.

Lemma 7.24. (h(Xn∧τ ))n≥1 is a martingale.

Proof. Note |h(Xn∧τ )| ≤ maxv∈V |h(v)|, and hence |h(Xn)| is uniformly bounded, and thus
is in L1. Note

E(h(X(n+1)∧τ )|Fn)1τ>n =
1

deg(Xn)

∑
v∼Xn

h(v)1τ>n = h(Xn)1τ>n = h(Xn∧τ )1τ>n.

Indeed, if τ > n, then Xn ̸∈ ∂, and hence h is harmonic on Xn. Also,

E(h(X(n+1)∧τ )|Fn)1τ≤n = h(Xτ )1τ≤n = h(Xτ∧n)1τ≤n.

Overall,

E(h(X(n+1)∧τ )|Fn) = E(h(X(n+1)∧τ )|Fn)(1τ>n + 1τ≤n) = h(Xτ∧n)((1τ>n + 1τ≤n)) = h(Xτ∧n).

as desired.

A harmonic function on a graph with a boundary condition g is called the harmonic
extension on g. Finding such a harmonic extension is a linear algebra problem (convince
yourself!) Martingale theory allows us to prove, fairly easily, that such a harmonic extension
exists and is unique.

Lemma 7.25. Given a graph G with boundary ∂ and a boundary condition g, there exists a
unique harmonic extension given by

h(v) = E(h(Xτ ))

where (Xn)n≥0 is a simple random walk started at X0 = v.

Proof. Note that by Lemma 7.24, h(Xn∧τ ) is a martingale. It is easy to check that condition
(3) of the optional stopping theorem holds, and hence h(v) = E(h(X0)) = E(Xτ ). Now
suppose there are two function h and h̃ which are harmonic extensions of g. Then h− h̃ is
a harmonic extension of a function which is identically 0 on ∂. It is easy to see that such a
harmonic extension must be identically 0.

Another interesting consequence of martingale theory is the nonexistence of bounded
harmoinic functions on the square lattice. The proof of this requires us to assume that
simple random walk on the square lattice is recurrent, i.e., it visits every point on the graph.
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Proposition 7.26. There cannot exist a harmonic function h on the square lattice Z2 which
is uniformly bounded and is not identically a constant function. (A function h is uniformly
bounded if there exists a C > 0 such that |h(v)| ≤ C for all v ∈ V .)

Proof. The same argument as in Lemma 7.24 entails that (h(Xn))n≥0 is a martingale. Since
h is bounded, (h(Xn))n≥0 is a bounded martingale. Therefore h(Xn) converges almost surely
by the martingale convergence theorem. Now suppose there are two vertices u and v such
that h(u) ̸= h(v). Since h(Xn) visits both u and v infinitely often by recurrence of simple
random walk on Z2, h(Xn) takes two different values infinitely often, which contradicts the
conclusion that it almost surely converges.
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