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1 Preliminaries

What is a Stochastic process? At it’s basic form, it is simply a sequence of random variables
X1, X5, ..., with some specified joint distribution. To emphasize, not only do we need to
specify the distribution of each random variable (X;);>1, but also specify the joint distribution
of any tuple (X;,,...,X;,) where i; > 1,4; € N, 1 < j < k. This is equivalent to specifying
the joint distribution of (X3, Xs,...,X,,) for any n € N.

For example, suppose we toss a fair coin independently forever. Let X; = 1 if the ith toss
produces a heads, and X; = 0 otherwise. We can also let Y; = X; for all i > 1. Clearly, Y; ~
Bernoulli(1/2) for all ¢ > 1 and X; ~ Bernoulli (1/2) for all ¢ > 1. However, (X3, X»,...) and
(Y1,Ys,...) are clearly different as stochastic processes. Indeed, (Y7,Ys,...) either equals
(1,1,...) with probability 1/2 or (0,0, ...) with probability 1/2, while (X3, X»,...) can take
many different combinations of Os and 1s with positive probability.

The index set of a stochastic process can be more general. The type described above is
a stochastic process indexed by the natural numbers N. Sometimes, we need to deal
with stochastic process (X;):>o indexed by R, = [0, 00). In this case, defining a stochastic
process means specifying the joint distribution of (X;,,...,X;,) where i; > 0,i; € R, 1 <
J<k

Although we won’t need it but a Stochastic process can be far more general, and can be
indexed by an arbitrary set Z. For example, Z can be the set of all smooth functions on R
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with compact support. The definition of a stochastic process do not change at all in this
case. Although seems a bit contrived and too complicated for its own good, this is quite
natural, and comes up in higher level math quite often. We won’t talk about it further in
this notes.

One advantage of having Z = N or R, is that there is a natural notion of time associated
with the index set. Indeed, we can talk about the past of time i to be the set {j : j < i}
and the future as {j : j > i}.

1.1 Conditioning on events with positive probability

In a first course in Probability, you learnt about conditional probability of events. Recall
the conditional probability of an event A given an event B with P(B) > 0 is simply

P(AN B)

PIAIB) = —5 g

Here is an example.

Example 1.1. Suppose we roll a dice twice.

e Suppose we are “given” the information that the first one is a 4. What is the probability
that the next one is a 47 Does your answer change if we our ‘given’ information about
the first roll is changed to any other number?

e What is the probability that the second roll is a 47

e Suppose we are “given” the information that the second roll is at least 4. What is the
probability that the second roll is a 67

For the first item, let A = { first roll 4}, B = { second roll 4}, C' = { second roll at least 4 }.
Therefore

IP’(C)z—zé, ]P(AQB):%, P(BNC)=P(B) =~

Thus we already answered the second item, it is the probability of the event B. For the first
item, using the definition of conditional probability,
P(ANB) 1/36 1

P( second roll 4 | first roll 4 ) = P(B|A) = P(A)  — 1/6 6

This answer is independent of the first roll being 4. No matter what the first roll is, the
second roll will always have probability 1/6 of producing a 4.
P(CNB) 1/6 1

P(second roll 4 | second roll at least 4 ) = P(B|C) = —]P’(C) 12 3



In Example 1.1, we conditioned on an event. But the first item is revealing something
more: we can condition ‘on whatever happened in the first roll” and still the probability of
the second roll is 4 is unchanged. This conditioning is called ‘conditioning on the information
of the first roll’. The mathematically precise way of ‘conditioning on the information of the
first roll” is to condition on the random variable which is the output of the first roll. !

Suppose A is an event with P(A) > 0. Then the conditional distribution of X conditioned
on A is given by
P(X <t A)

P(A)

It is easy to check that Fy.4(t) is indeed a cdf and hence corresponds to a probability
distribution. We call this probability distribution colloquially as the distribution of X
conditioned on A.

Sometimes, for practical reasons, it is easier to compute the complementary event:

Fyua(t) == P(X < t|A) = teR (1.1)

P(X >t A)

1= Fra(t) = P(X > 114) = =5

; teR

Example 1.2. Exponential distribution has “no memory”. This means that if someone tells
you that X > s then the conditional distribution of X conditioned on X > s is the same as
s+ X. Let us see why.

P(X > t —A(s+t)
P(X >s+tX >s)= <X>S+):€/\ =e M
S e~ s

and
Ps+X>s+t)=P(X >t)=e M

which are the same.

In fact, Exponential distribution is the only continuous distribution supported on the
positive real line having the memoryless property. In particular, if

P(X >s+tX >s)=P(X >t) for all s, >0

for some continuous random variable X with P(X > 0) = 1, then X ~ Exponential()) for
some A. To see this, we first claim

G(z) = G(1)*. for allz > 0. (1.2)

where G(z) = 1 — Fx(x). Let us now explain our claim. If x = 2, then using our condition
for s =t =1, we get

!To be super precise, the ‘information’ is encoded on something called a sigma-algebra which is something
we will try to avoid.



Similarly, for any integer n, we have
G(n) = G(n — 1)G(1) and hence by induction, G(n) = G(1)".
and similarly, for any integer n
G)=G((n—1)/n+1/n)=G((n—1)/n)G(1/n) =...G(1/n)" = G(1/n) = G(1)Y".
Next, for any rational number p/q with p,q > 0 and ged(p, q) = 1,

G(p/q) = G((p—1)/q)G(1/q), and hence by induction, G(p/q) = G(1/q)? = G(l)p/q.

Thus Equation (1.2) is proved for all rationals. Now recall that G is right continuous since
any cdf is right continuous. Thus for any x € R, take a sequence of rationals r,, converging
to z from the right.

G(z) = lim G(r,) = lim (G(1))™ = G(1)".

n—oo n—o0

Now we conclude that that X ~ Exp (—In(G(1))) simply by doing some gymnastics with
exponentials and log and recalling that if Z ~ Exponential A then P(Z > t) = e~ .

Example 1.3. Suppose Xj, X3 be i.i.d. Exponential (1) random variables. let us compute
the distribution of X; conditioned on A = {X; > X,}. It turns out, computing P(X > ¢|A)
is easier here. Note P(X; > X5) = 1/2 by symmetry. Indeed, P(X; > X5)+P(Xy > X;) =1
and both probabilities are equal as X;, Xy are i.i.d. Hence, P(X; > X5) = 1/2. Here
P(X; = X5) = 0 as the distributions are continuous, so we can simply ignore this term.

P(Xl >, X7 > X2)
X1 > XQ)

1
= 2/ / —1‘1 del‘gdﬂfl
= / x1(1 — eixl)dl'l
t

— 26—t _ 6_2t

P(X, > t|A) =

Thus the cdf is
P(X, <tA)=1-2e"+e 2 =(1-e")>

Exercise 1.4. Show that the conditional distribution of X in Example 1.3 is the same as
that of max{ Xy, Xa} (without conditioning).



xy

Figure 1: Example 1.3. We need to compute the integral in the green region.

1.2 Discrete case.

We now define the conditional probability mass function (Conditional pmf) which
is what we need to compute if are random variables in question are discrete. Recall that we
denote the probability mass function (pmf) of a random variable X by

px(x) =P(X = z).

Definition 1.5 (Conditional pmf). Let X and Y be random variables and y € R is such
that P(Y =vy) > 0. Then the conditional pmf of X given'Y =y is given by

pivlaly) = PX =alf =9) = P(XP(:Y$;§;): " ];(f(’;))

Here p(z,y) is the notation for the joint pmf of X and Y.

This leads to a natural definition of conditional distribution function (conditional
cdf)

Definition 1.6 (conditional cdf). Let X and Y be random variables and y € R is such that
P(Y =y) > 0. Then the conditional cdf of X given Y =y is given by

Fypy(zly) = P(X < 2]y =) = P(X <2,Y =y) _ 2, P(a,Y)

P(Y =y) py (y)
Remark 1.7. Note that the conditional distribution of X given Y = y does NOT make sense
(i.e. ill defined) if P(Y = y) = 0. However if P(Y = y) > 0, we can simply revert back to
the old definition of conditional distribution when conditioning on an event Equation (1.1),
which is what we did above




Let us do a simple example and compute the conditional pmf of Y] given Y5 = 1 in each

of the following.

YilYs — 0 1 | Marginal(Y7)
0 1/4 [ 1/4 1/2
1 1/4 ] 1/4 1/2
Marginal (Y5) | 1/2 | 1/2 1
Here 1/4 1/4
1)=—=1/2 1|1) = —=1/2.
Pyvi|vs (O| ) 1/2 / ) pY1|Y2( | ) 1/2 /

Actually here we will realize later that the conditional distribution of Y7 given Y5 = 0 or
Y5 = 1 is the same as the distribution of Y;. We will see later that this is equivalent to saying
that Y] and Y, are independent.

ilYy,— 0 1 | Marginal(Y7)
0 /2] 0 1/2
1 0 |1/2 1/2
Marginal (Y3) | 1/2 | 1/2 1
Here . o
le\Y2<O|1> = 1—/2 =0, Pvipys(1]1) = m — 1.

Exercise 1.8. Calculate the conditional distribution of Y1 given Yo = 0 in each of the above

two examples.

Example 1.9. Suppose X;, Xs be i.i.d. Geom(p). What is the conditional distribution of
X given X7 + Xo =n?

Solution.

should takes each value in {1,2,..

gives fort =1,2,...,n—1

P(X) =i, Xy =n—i)

]P)(Xl + XQ = n)

Intuitively, since Geom(p) is the number of tosses needed until we get a head, X
.,n — 1} with uniform probability. Formally a calculation

SP(X, = )P(Xy = n — i)

_ (A=ppA—pp
SN = p)itip(1 — p)n—i-lp

!

T n—1

Thus the conditional distribution is Uniform in the set {1,...,n}.

Example 1.10. X; ~ Poisson()\;). Calculate conditional pmf of X; given X; + X5 = n.
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Solution. A calculation gives

n )\1 k )\2 n—k
P(X) = KX, + X, = n) = (k> (MHQ) (MH?)

i.e. the conditional distribution of X; given X; + Xy = n is given by Binomial (n, /\1’:3/\2).

We leave this calculation as an exercise. (If you don’t recall the pmf of Poisson (\), look up
the formula sheet at the end of the notes.)

Proposition 1.11. Suppose (X,Y) is discrete. Then X and Y are independent if and only
if
pxyy (@ly) = px(z) for all z,y with py(y) > 0.

Proof. This is a simple consequence of the fact that X,Y are independent if and only if
pxy(z,y) = px(z)py(y) for all z,y. O

Exercise 1.12. Suppose X is a distrete random variable taking values in N. Suppose it is
memoryless, that is,
P(X >m+n|X >m) =P(X >n).

for all m,n € N. Show that this must be a geometric random variable.

1.3 Continuous case.
As you might suspect, we need to define the conditional density function.

Definition 1.13. Let XY be random wvariables with joint density f(z,y) and marginal
densities fx(x) and fy(y) respectively. Let y be such that fy(y) > 0. Then the conditional
probability density function of X givenY =y is given by

_ flzy)
fX|Y(x‘y) - fY(y) :

The conditional cdf of X given'Y =y is given by

Y f(uy)
—c0 fY(?J)

Example 1.14. Suppose that the joint density of X and Y is given by

du.

Y
Fx|y (zly) :/ fxpy (uly)du =

e~ t/Ye~Y

Y

) 0<z< o0, 0 <y < oo.

Calculate the conditional density of X given Y = y for some y > 0.

To do this, we first find the marginal density of Y:

00 o—T/Y =Y
e e
/ ——dr =¢".
0 Yy



One way is to calculate the integral directly, and another simpler (probabilistic!) way is to
observe that %}e’x/ Y is the density of exp(1/y), and hence fooo e~*/¥ = y. Thus the conditional

density is
e~ z/Ye—y
etVet ey
fx\yzy(iE’y) = oy = ” ) 0 <z <o0. (1.3)

This is simply the density of an Exponential (1/y) random variable.

Example 1.15. Let X,Y be i.i.d. Uniform [0, 1]. Let U = max(X,Y) and V = min(X,Y).
Compute the conditional density of V' given U = u.

Let us first compute the joint density of U, V. You can first write down the joint density of
(X,Y) and then employ the Jacobian for the transformation (z,y) — (max(z,y), min(z,y)).
But here is a different way. For every u > v,

P(V >v,U<u)=P(X € (v,u],Y € (v,u]) = (u—v)*.
Also P(U < u) =P(X < u,Y < u) = u? Therefore for any u > v
P(V<v,U<u)=PU <u)—P(V >0v,U <u) =u*— (u—10)*=v2u—v).
If u < v, then P(V >v,U <u)=0. Thus
P(V <v,U <u)=PU <u) =u’

Thus the joint cdf is
v(2u —v)ifu>wv
Fyv(u,v) = -
i (U, 0) {u2 if u<w.

The joint pdf is obtained by computing the partial derivative %Fav which is

2if 1>u>v>0

0 otherwise .

fov(u,v) = {

The marginal density of U is given by

fola) = {2u if u e (0,1)

0 otherwise
Thus the conditional density, for any u € (0,1) is given by

2 :%ifogvgu

Tviv(v]w) {ﬁ

0 otherwise

In words, conditioned on U = u, V' ~Uniform [0, u]

1
fV|U(U|U) = alogvgu-
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Proposition 1.16. Suppose (X,Y) is jointly continuous. Then X and Y are independent
if and only if
Ixyy(zly) = fx(x) for all x,y with fy(y) > 0.

Proof. This is a simple consequence of the fact that X,Y are independent if and only if
fxy(@,y) = fx(x)fy(y) for all z,y. [

Let us now introduce an important terminology. Sometimes we will talk about distribu-
tions of random variables where the parameters are also random. For example, we will talk
about X ~Exponential(A) where A is itself a random variable, say with some pdf fy. What
we mean here is that the conditional distribution of X given A = X is Exponential A\. So the
joint density of (X, A) is given by

fxn = Ae M fa(N), z>0,\€ER.
and 0 otherwise. The distribution of X is then represented by the pdf

fx(z) = / h Ae ™ fy(N)dA = E(Ae ™)

0
for z > 0 and 0 otherwise.

Exercise 1.17. Check that if X ~FEzponential (1/Y) and Y ~ Ezxponential(1), then the joint
density of (X,Y) is that given in (1.3).

Exercise 1.18. Let X ~N(A,Y) where (A,X) are i.i.d. Exponential (1).Calculate the joint
density of (X, A, ).

Sometimes we might need to combine discrete and continuous random variables. The
following example illustrates this.

Example 1.19. Let X ~ Bernoulli (U) where U ~Uniform [0, 1], then the conditional
distribution of X given U = w is given by Bernoulli (u). However, we cannot write the joint
density nor write the joint pmf in this case as U is continuous and X is discrete. Nevertheless,
we can compute probabilities as follows. For any z € (0, 1),

P(X = 1,0 < 2) — / PX = 1[0 = u) fy (u)du

U=—00

If 2 <0, then [ P(X =1|U = u) fu(u)du = 0 since fy(u) = 0 whenever u < 0. If z > 1,

/Z P(X = 1|U = u) fy(u)du = /1 udu = %
U 0

This makes sense as if z > 1 then {U < z} always happens, and thus P(X = 1,U < z) =
P(X = 1). This also shows that marginally, the unconditional distributiopn of X is simply
Bernoulli (1/2).
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Exercise 1.20. In the above example, compute P(X = 0,U < z) and double check that
PX=1U<z2)+P(X=0,U<2z2)=PU < z).
We will deal with this in more depth in Section 1.7.1.

Example 1.21. (Using conditional density to our advantage) This is a more complicated
example. Suppose Z ~ N(0,1) and Y has a chi-squared distribution with n-degrees of
freedom (denoted y?2 distribution sometimes) and is independent of Z. In other words, Y
has the density 2

6—y/2yn/2—1

fry) = 2T (n)2)’ y > 0.

Let
Z
VY/n
T is sometimes called a t-random variable with n-degrees of freedom. Calculate the density
function of T

Notice that the conditional distribution of 7" given Y = y for some y > 0 is given by the
distribution of \/LT = /n/yZ ~ N(0,n/y). Hence the conditional density function is
y/n

1
t —= —e_ 2n
fT|Y( ]y) 27rn/y

Therefore the joint density of Z and Y is given by fryy(z|y)fy(y) and consequently the
marginal density is given by

g e—y/Zyn/Q—l

Awhymwh@ﬂw=4mv§%@€%awwmﬂfw

We simplify

2 e—y/Zyn/Q—l

/°° 1 % i /°° 1
o 2rnjy | 2PTw/2)Y T )y Vamn2oD(n/2)

with ¢ = % + % The integrand is the density of a I random variable (without the constant
in front) and hence using the formula for the pdf of a Gamma random variable (see table
2.2 in book), we see that the density of ¢t-distribution with parameter n is given by

F(nTH 2\ ~(nt1)/2
f(t):—n<1—|——) , teR.
g Vrnl'(5) n

*You might also recognize this as a I'(n/2, ) random variable. Also one can show that if

efcyyn/2+1/271dy.

Z=X+X3+.. . +X32

where X5,...,X,, are i.i.d. N(0,1) then Z follows a chi-squared distibution with n degrees of freedom.

11



1.4 Conditional expectation

The definition of the conditional expectation is the same as the unconditional one, except
we need to replace the pdf / pmf by conditional pdf/pmf

Definition 1.22 (Conditional expectation). Let X and Y be discrete random variables and
y € R is such that P(Y = y) > 0. The conditional expectation of X given Y =1y is given by

E(X|Y =y) Zﬂ?’ =Y =y)=> apxy(zly).
Also if (X,Y) are jointly continuous with fy(y) > 0 then
BXY =9) = [ afu(aly)da

Example 1.23. We could directly compute the summation, or alternately, be a bit more
lazy, and simply observe using In Example 1.10,

At
A+ Ao

E(X1|X1 —|—X2 = n) =N

Indeed, Example 1.10 exactly tells us that the conditional pmf of X; given X; + Xy =n is

that of a Bin(n, /\1’):/\2) random variable. We know that the expectation of a Binomial (n, p)

random variable is np.

Example 1.24. To illustrate how to think of conditional expectation as a random variable,
consider the following problem. Can you find a random variable X, Y such that E(X) = oo,
E(Y) = oo, but E(X|Y) < 00?

Actually this is very easy. Take Y to be any random variable with infinite expectation,
for example Y = C/i%,i = 1,2,... and C = (372, )~". Now take X =Y. Of course,
E(X|Y) = X < oo almost surely.

Example 1.25. Suppose X1, X5, ... bei.i.d. with finite mean and assume S,, = X;+...+X,,.
What is

Observe that E(X|S,) = E(X3|S,) = --- = E(X,]S5,) by symmetry. Also,
E(X;+...X,|S,) =S,
Thus E(X}]S,) = S, /n.

Example 1.26. Suppose X, X5 are i.i.d. with E(X;) < oo. Suppose in a lake there are X
salmon and X, halibut fishes (and no other fish). Pick a fish uniformly at random. What is
the chance that you pick a salmon?

12



Solution. By symmetry, the answer should be 1/2. Let us carefully verify it by doing the
calculation.

P(pick Salmon) = Y P(pick Salmon|X; = i, X5 = j)P(X; =i, X, = j)
ij=1
i
= P(X; =i, Xy = j
it ( 1 2 J)
X
— E(—l
X+ X,

).

Since the distribution is not given, there is no way to calculate this directly. However, we
can use the trick in example 1.25 since X5, X, are i.i.d. Using that we get

X 1
E+—%) =5
X1+ Xs 2
as expected.
Example 1.27. In example 1.14, the conditional expectation

E(XY =y) =y

because the conditional pdf is that of an exponential with parameter 1/y and we know that
expectation of an exp(A) random variable is 1/A.

Just like an unconditional expectation, the conditional expectation of a function g(X) of
a random variable can be computed as follows.

Proposition 1.28. Let X and Y be discrete random variables and y € R is such that
P(Y =vy) > 0. Then

E(gX)Y =y) =D g@)P(X =z|Y =y) =Y g()px)y(z]y).

Also if (X,Y) are jointly continuous with fy(y) > 0 then

Bl =) = [ g()far alyds
Exercise 1.29. In example 1.14, calculate
E(eX|Y = y).

Hint: Use mgf of exponential random variable.
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1.5 Expectation by conditioning.

Sometimes it is useful to think of E(X|Y’) as a random variable (that is, when the value of
the conditioned random variable Y is not fixed). The following identity is super useful.

Theorem 1.30. For any function g : R — R, such that E(|g(X)]) < oo
E(E(g(X)|Y)) = E(X).

Proof. Let X,) be the at most countable sets in which X, Y takes values. Write the joint
probability mass function as pxy(x,y) = P(X = z,Y = y). The marginal of Y is py(y) =
> sex Pxy(7,y), and the conditional pmf of X given Y =y (for those y with py(y) > 0) is

Pxy (Ia y)

pxy(r|y) =P(X=2|Y =y)= o (@)

By definition of conditional expectation in the discrete case,

Elg(X)|Y =y] = ) g(@)pxy(x|y).
zeX
Therefore the iterated expectation is

E(E[g(X =Y Elg(X)|Y =y]pv(y)

yey

=> (Zg ) pxpy (2 | y)) Py (y)

yeY \zeX

~ Y ) >py<y>

yey zekX

_ZZQ z) pxy (T, y).

yeY zeX
Interchanging the order of summation ® gives
E(E[g(X) [Y]) =) g(z) (pr,y<x,y>> = 9(@)px(x) = E[g(X)].
zEX yey zEX
This proves the claim. O
Example 1.31. in Example 1.14, we can think of E(X|Y) =Y and hence we get

E(X) = E(E(X|Y)) = E(Y).

3this is justified by absolute summability since E|g(X)| < oo, which comes from a theorem called Fubini’s
theorem. If this is unfamiliar, don’t bother about it, and just accept that it can be done.
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Let us illustrate how this can be useful.

Example 1.32. Recall the geometric random variable: X ~ Geom(p) if
PX=Fk=00-p"'p, k>1

In other words, we toss a coin with P(head) = p until we get a heads and count the number of

tosses needed. We can simply compute the expectation of X to be 1/p by direct calculation
4.

> k(1—p)p=—.

> 1
k=1 p

Let us do this in a different way using the coin tossing experiment way of thinking about
Geometric random variable. Let Y = It fiip heads- 1That is Y = 1 if the first flip is heads
and tails otherwise. Then

E(X) = E(E(X]Y))
=EX]Y =1DPY =1)+EX|Y =0)PY =0)
=1-p+E[(14+2)|Y =0](1 —p)
where Z is the number of tosses needed to get a head where we count from toss number

2 onwards. Note that Z is first of all independent of Y since it does not depend on toss
number 1. Secondly, Z = X in distribution. Therefore,

E(X)=p+E[1+2)](1-p) =1+ (1-pE(X).
which simplifies to E(X) = 1/p.

Exercise 1.33. Suggested read: Example 3.15 (both editions) which computes the expected
number of trials needed until we get k consecutive heads.

Example 1.34 (Gamblers ruin). Consider a simple random walk on a cycle in which an ob-
server jumps to one of the neighbours in the following graph with equal probability. Starting
from 4, find the expected number of steps taken by the observer to hit 0.

41t is a good exercise to redo this summation if you forgot how to do it.
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Let N; be the required number of steps needed when the observer starts from ¢ and let
m; = E(V;). Note that mg = 0. Let £ be +1 or —1 according to the event that the walker
moves forward (or clockwise) as compared to backwards (or anti-clockwise). Also for each
i=1,....n—1

E(N;) = E(Ni|§ = )P(¢ = 1) + E(V;|§ = —1)P(¢ = —1)
= (14 E(Nia))5 + (1+E(Vi));

1
=1+ §(mi+1 +m; 1)

We need to solve this equation with my = 0. Solving this, we see that
m; =i(n —1)
Exercise 1.35. Check the above formula. You may use induction.
Suggested read: Example 3.16 from both editions. Can you link Example 3.16 with

this example? This problem is called Gambler’s ruin for this reason.

1.6 Variance by conditioning

We start with the definition of conditional variance.
Definition 1.36.
Var(X[Y = y) = E(X?]Y =y) — (E(X]Y = y))*.

Again we can think of Var(X|Y') as a random variable with the randomness coming from
Y.

Exercise 1.37. What is Var(X|X)?

The formula for computing variance by conditioning is slightly complicated. Suppose we
want to find the variance of X and actually conditioning by another random variable Y is
useful.

Proposition 1.38 (Law of total variance).
Var(X) = E(Var(X|Y)) + Var(E(X]Y)).
Proof.

E(Var(X[Y)) = E(E(X*|Y)) - (E(X|Y)))’
— E(X?) - E(E(X]Y))?).
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Also

Var(E(X[Y)) = E(E(X]Y))?) — (E(E(X]Y)))”
=E((EXY))*) - (B(X))*.

Adding them, E((E(X|Y))?) cancels and we get Var(X) on the right hand side, concluding
the proof. O

Example 1.39. Let X, X5, ..., beii.d. with mean p and Variance o2. Let S, = X, +...+
X,,. Suppose N is a positive integer valued random variable independent of everything else.
Then find Var(Sy).

Note that conditioning on N is a good idea. Thus we can use the formula

Var(Sy) = E(Var(Sy|N)) + Var(E(Sy|N)).

Note - evend
Var(Sy|N = n) = Var(S,|N = n) "“"="" Var(S,) = no>.
Thus
E(Var(Sy|N)) = E(No?) = o°E(N).
Also

independence

E(Sy|N =n) =E(S:|N = n) E(S5n) = nu,

which means

E(Sy|N) = Np.
Thus

Var(Sy) = E(Var(Sy|N)) + Var(E(Sy|N)) = E(No?) 4 Var(Npu) = 0°E(N) + p? Var(N).

Remark 1.40. If N ~ Poisson (A) then Sy is called a compound Poisson random variable.
Here is a practical example. Suppose the number of accidents in Victoria in a month is a
Poisson random variable and an insurance company loses a random amount X of money for
each accident which are i.i.d. Then the total loss of the company in a month will be given
by a compound Poisson random variable.

1.7 Miscelleneous examples

Example 1.41. (Poisson thinning) Suppose a random number of points in a square are
marked black. Suppose that the number of black points is Poisson(A). Now suppose for
each such mark, we independently color them red with probability p or blue with probability
(1 —p). What is the distribution of the number of red marks in the square?

Suppose R is the number of red marks and B the number of blue marks. Then R +
B ~Poisson (A). Also conditioned on R + B = n, R is distributed as a Bin(n, p) random
variable. Thus

17



Now note

P(R = r) :iP(R:ryR+B:n)P(R+B:n)

S (-

n!
= PR S (-

Thus R ~ Poisson p(A). Thus coloring lowers the mean (sometimes called the intensity) of
the Poisson variables by a factor of p.

Exercise 1.42. Show that R and B are independent and R ~ Poisson(Ap) and B ~
Poisson(A(1 — p)).

Suggested read: Example 3.24 (Ed 12) / Example 3.23 (Ed 11).

Example 1.43 (Order statistic). Let X and Y be independent Uniform(0, 1) random vari-
ables. Define
Z :=min(X,Y), M = max(X,Y).

We will compute the conditional expectation E[Z | M].
Using the conditional density deduced in Example 1.15,

m2_
2

1 m
m m 2

m m 1
]E[Z\M:m]:/ ufZM(u\m)du:/ u-—du=
0 0
Therefore, as a conditional expectation (i.e. as a random variable),
E[Z | M=m]=—.

1.7.1 Uniform Prior, Polya Urns and Bose Einstein statistics

Uniform Prior. Let us continue the example in Example 1.19. Suppose U ~ Unif[0,1]
and conditioned on U, (&, ...,&,) are i.i.d. Bernoulli(U). Then first of all

P(gn:n:/o P(gn:uU:u)du:/o udu:%. (1.4)
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Now suppose we want to compute the joint law of (§,...,&,). Note that (&,...,&,) is
a vector of Os and 1s. Thus for any vector (e1,...,€,) where each ¢; is either a 0 or a 1 and

Z?:l &=k

P(fl 2817"'7571:571) :E(P(gl :517-"a€n:€n|U))
=EU*1 - U)"")

= /01 uF (1 — )"

_ kl(n — k)!

(n+1)! (1.5)

where the second equality follows from the fact that whenever ¢; = 1 we need to multiply
by U which is the probability of & = 1 conditioned on U. Otherwise, for the same reason, if
g; = 0, we need to multiply by (1—U). Note here we used the fact that £, & are independent
conditioned on U. The evaluation of the integral in the last line comes from the density of a
Beta distribution ® (we will assume this, you can check out the formula from the wiki link).

Thus we can now compute conditional distribution of §,; = 1 conditioned on (&1, ...,&,) =
(€1,...,&,) where we assume » . & = k. By the same logic as above,

P = -5 Qn = €nyQn =
P& =16 = €1, 6n = €n) = (glp(;l’:sf... ; 25;1) :

B f()l uk+1<1 _ u)n—k
fol uk (1 — u)nk
(k-+1)!(n—k)!
. (n+2)!
T kl(n—k)!
(n+1)!
B k+1

Cn+42

(1.6)

This tells us that if more 1s are sampled in the first n draws, it is more likely that we
have a 1 in the next draw, something which is not true for just i.i.d. random variables. Thus
we can note already here that (£1,&s, ..., &,) are not unconditionally i.i.d. although they are
conditionally i.i.d. given U = w.

An urn model. Now let us consider something which is apparantly completely different.
Consider the following urn model which is the following stochastic process. Suppose initially
there are r red balls and b black balls in an urn. In each step, a ball is chosen uniformly at
random.

e If it is red (resp. black), the ball is put back along with an extra red (resp. black) ball.

°See https://en.wikipedia.org/wiki/Beta_distribution to learn more
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e [f it is black, the ball is put back along with an extra black ball.

Let

n

1 if nth ball drawn is red
0 otherwise

We now make the following (perhaps surprising) claim:

Proposition 1.44. Suppose r = b= 1. Let &,&,, ... be i.i.d. Bernoulli (U) (as in the uni-
form prior example). Let (X1, Xo,...) be as described above. Then (&1,&s,...) = (X1, Xo,...)
in distribution (as stochastic processes). In other words, for everyn > 1,

(X1,..., Xn) = (&,...,&) in distribution.

The claim above is surprising as the description of the two processes are very different,
yet it turns out that they have the same distribution.

Proof. The proof is surprisingly easy. We already know from (1.4) that P(¢, = 1) = % for
any n > 1. Of course it is easy to calculate the distribution of Xj:

T b
= P(X;=0) =
r+b (X1 )

P(X, = 1) =

If » = b =1, both the ratios above are 1/2 and hence X; = &; in distribution if r = b = 1.

How to compute the conditional distribution of X, conditioned on (X7, ..., X,,_1)? This
is actually not so hard. The vector (X7, ..., X,,_1) is a sequence of Os and 1s. The probability
of X,, =1 given (Xq,...,X,,_1) is the number of red balls in the urn at time n — 1 divided
by the total number of balls in the urn at time n — 1. The latter is deterministic as we
always put in 1 ball in the urn, so the denominator is r +b+n — 1. The numerator is simply
r 4 377" X;. Thus, we have the formula

T—i‘zﬁ__lgi
PX,=1X1=¢1,..., X 1 =¢6,,) = — ==L~
(Xn+1 X1 =¢1,..., 1= En-1) rtbtn—1

Plugging in » = b = 1 and assuming Z;:ll g; = k, we see that

1+k
P(X1 =1X1=¢1,..., X1 =¢€p1) =
(Xnp1 X1 =e 1= En-1) 2
Thus the conditional distribution of &,.; given (&,...,&,) is given by the same formula
using (1.6). This is enough to conclude by induction that (Xi,...,X,) = (&,...,&,) in
distribution. (Exercise: Convince yourself of the last step.) O]
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1.8 De-Finetti’s theorem

Is there a deeper reason behind Proposition 1.44 or was it a fluke? Turns out, that this
phenomenon can be explained by the notions of exchangeability and a fascinating theorem
called De-Finetti’s theorem. We will attempt to explain this now. Although we already know
that if r =1,b =1, X, = &, in distribution, and hence X,, ~ Bernoulli (1/2), is there a way
to prove this directly without referring to the &,s7 We now prove the following proposition,
which computes the distribution of X, for general initial condition r, b.

Proposition 1.45. For anyn > 1,

r b
P(X .

r—+b r+b

That is the distributions of X,, and X, are the same!

P(X, =1) =

Proof. We use induction on n, but there is a tricky step. It seems like conditioning on X,,_;
is a good choice, but the conditional distribution of X, given X,,_; is complicated as we do
not know what happened in the first n —2 draws.On the other hand, we can condition on the
first draw, and then think that the urn process ‘refreshed’ with a different initial condition
of balls, which depends on what happened in the first draw.

Here is a full proof. The induction hypothesis is crucial, we will explain a subtlety about
this assumption later. Suppose for any two integers u, v, and an urn initially containing

u red and v black balls,

“ P(X,_; = black ) = ——.
U+ v U+ v

Then for our urn initially containing r red and b black balls,

P(X,—1 = red ) =

P(X,, =red) = P(X,, = red|X; = red)P(X; = red) + P(X,, = red|X; = black)P(X; = black)
r+1 r n r b

r+b+1r+0b r+b+1r+b
r

r+b

which completes the proof. In the induction step, we used the fact that if the first step
produced a red, then we have an urn with r 4+ 1 red and b black balls. Thus the conditional
distribution of X,, given X; = 1 is the same as the distribution of X,,_; when we start the
process with r + 1 red and b black balls. Since our induction step was assumed that the
formula is true for for any starting configuration of red and black balls (which is critical!),
induction gives us the second line from the first line. The rest is just algebra. O]

In fact, more can be said. We claim that for any n # m,
P(X,, = red, X,, = black) = P(X,, = red, X,, = black).

This follows from the more general proposition. First we need to introduce the notion of
exchangeability.
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Definition 1.46. We say X, Xs, ..., X,, are exchangeable if for any permutation m of

{1,2,...,n},

(d)
(Xl, PN 7Xn) - (Xﬂ(l), FRPN 7X7r(n))

This might seem a weird notion, but is actually quite natural. For example if (X3,..., X,,)
are i.i.d. then they are definitely exchangeable.

Lemma 1.47. If X, X,,..., X, are i.i.d. discrete random wvariables with common proba-
bility mass function px(-), then (Xi,...,X,) is exchangeable: for every permutation 7 of
{1,...,n} and every x1,...,x,,

]P’(Xl = T1y... ,Xn = l’n) = ]P’(Xﬁ(l) = T1,y... ,Xﬂ(n) = :L'n)

Proof. Since the X; are independent and identically distributed with common pmf px, the
joint pmf factors as

P(Xl = T1,y... ,Xn = l’n) = pr(l’z)
i—1

For any permutation 7 of {1,...,n} we have

P(Xﬂ'(l) = T1y..- ﬂ(n) = xn HPX l‘ﬂ' z)

But of course, the product of numbers is invariant under reordering, so

HpX O] HPX xz

Therefore
P(Xl = T1,... ,Xn = (L’n) = ]P)(Xﬂ'(l) = T1,... ,Xﬂ(n) = (L’n),

which proves exchangeability. [

Remark. The same proof works for i.i.d. continuous random variables (replace pmf by pdf);
the key property is identical distribution together with independence so the joint density is
a product of identical marginal densities, hence symmetric. We leave it as an exercise to
complete this.

Counterexample: independent but not identically distributed. Independence alone

does not imply exchangeability. A concrete counterexample with two discrete variables:
Let X; ~ Bernoulli(0.2) and X5 ~ Bernoulli(0.8), with X; and X5 independent. Thus

P(X;=1)=02, PX;=0)=0.8,



P(X;=1)=08, P(X,=0)=0.2

Compute
P(X; =1,X, = 0) = P(X; = 1)P(X, = 0) = 0.2- 0.2 = 0.04,

whereas
P(X;=0,X,=1)=P(X; = 0)P(X; =1) = 0.8-0.8 = 0.64.

Since P(1,0) # P(0,1), the joint distribution is not invariant under swapping the two coor-
dinates; hence (X7, X5) is not exchangeable.

Exchangeability is a more general notion than independence. There are dependant ran-
dom variables which are exchangeable.

Example 1.48 (uniform prior). Suppose U ~ Unif|0, 1], and given U, (&, ...,&,) are i.i.d.
Bernoulli (U). We claim this is exhangeable.
Fix arbitrary values w1, ..., 7, € {0,1}. Let

k= zn: Z;
=1

be the number of ones among the z;’s. We already know from (1.5), that

1
P& = a1, 6 = 1) = / k(1 = u) " du, (1.7)
0

Now let 7 be any permutation of {1,...,n}. The permuted event {{r1) = 1,...,&m) =
x,} has the same number of ones among its coordinates as the original event; indeed the
multiset of values {z1,...,x,} is unchanged by permutation, so the corresponding sum is
again k. Repeating the same conditioning calculation yields

1
P(&r() = 2153 ) = ) = / uF(1—u)" " du.
0
Therefore for every permutation = we have

P(fl = T1,... 7§n = (L’n) = P(fﬂ—(l) = T1,... 7£7r(n) = l’n)7
which is exactly the definition of exchangeability. [

Example 1.49. If (X;,...,X,) is a Multivariate Normal N(u, ) with Cov(X;, X;) = p
if i« # j and Var(X;) = 1 for all ¢ then it is exchangeable. Why? This is simply because
the multivariate Normal distribution is completely determined if we know the mean and the
covariance matrices, which remains completely unchanged if we permute the variables.

Coming back to the urn model:

Proposition 1.50. Let (X,,),>1 be as in Proposition 1.45. Then (X1, Xa,...,X,) is ex-
changeable.
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Remark 1.51. It follows immediately from Proposition 1.50 that for any m # n
(X, Xin) = (Xon, X,) in distribution
Proof sketch of Proposition 1.50. We prove for n = 3.

rb(r + 1)
(r+b(r+b+1)(r+b+2)

P(X;=1,X,=0,X;=1) =

similarly
r(r+1)b
(r+bo)(r+b+1)(r+b+2)

Thus the probability of the sequence (1,1, 0) is the same as that of the sequence (1,0, 1). In
fact any permutation of this sequence has the same probability. From this you can easily
convince yourself that the probability only depends on the number of red and black balls
in the sequence chosen which implies exchangeability.

Here is a more detailed proof. for every permutation = of {1,...,n} and every binary
vector (z1,...,x,) € {0,1}",

]P)(Xl - 1,X2 - 1,X3:0) -

P(Xl =T1,... ,Xn = .Z'n) = ]P(Xﬂ'(l) = T1,... >X7r(n) = an>

Notation. Write k =Y . | z; for the number of red draws among 1, ..., x, (so 0 < k < n).
For an integer m > 0 and a € R we denote the rising factorial (Pochhammer symbol)

a™ =ala+1)---(a+m—1),

with the convention a(® := 1.

Sequential probability calculation. Fix a particular sequence (x1, ..., z,) with exactly
k ones. Under the Pélya urn dynamics the probability of observing this particular ordered
sequence is obtained by multiplying the one-step conditional probabilities. At the first draw
the probability of drawing red is /(r 4+ b) and black is b/(r + b). More generally, if so far j
red draws and 7 — 1 — 7 black draws have occurred in the first ¢ — 1 draws, then the probability
that the ¢-th draw is red equals

_rti
r+b+i—1
and the probability it is black equals
b+ (i—1—j)
r+b+i—1"
Multiplying these stepwise probabilities along the sequence (x1,...,z,) we obtain

Xy =) = ﬁ r 4+ (number of reds among x1,...,x;_1)

]P)(Xlzl’l,... T+b+l—1
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and similarly the appropriate factor for z; = 0. Rearranging the product by collecting the
contributions of red draws and black draws gives the closed form
(k) pn—F)
P(Xlle,...,Xn:$n>:m. (18)
(Indeed, the numerator is the product of the k red-factors v, (r +1),...,(r +k — 1) times
the n — k black-factors b,(b+1),...,(b+n — k — 1); the denominator is the product (r +
b),(r+b+1),...,(r+b+n-1).)

Joint probability depends only on k. The right-hand side of (1.8) depends only on
k = > ,z; and not on the order in which the ones and zeros appear. Hence any two
sequences with the same number k of red draws have the same probability. In particular,
for any permutation 7 of {1,...,n},

]P’(Xl = T1,... ,Xn = :L‘n) = ]P)(Xﬂ-(l) = T1,... ,Xﬂ.(n) = :En),
which is exactly the definition of exchangeability. This completes the proof. n

Exchangeable sequences satisfy the following remarkable theorem due to De Finetti:

Theorem 1.52 (De-Finetti’s theorem). If (&1, ...,&,) are exchangeable and takes values in
{0,1}. Then there is a random variable U defined on the interval [0, 1] so that conditioned
onU, (&,...,&,) ~ i.i.d. Bernoulli (U).

Note that the theorem does NOT imply that the law of (&, ...,&,) must be i.i.d. them-
selves as we saw that there are exchangeable sequences which are not i.i.d. Also the theorem
does not say what U is, in fact U can be quite mysterious!

Now back to the urn problem. Let &,&,, ..., &, be such that & = 1if X, isred and & =0
if X; is black. Then applying De-Finetti, there is a random variable Z supported on [0,1]
such that & ~ i.i.d. Bernoulli (Z). What is the law of Z7

Claim 1.53. If we start with 1 red and 1 black ball, then Z ~ Unif[0,1]. (This exactly tells
us that in this case, (&1,...,&,) coming from the urn process as above has the exact same
law as the uniform prior case.)
Proof. Note that in the urn process starting with 1 black and one red, and & = 1 if X is
red and &; = 0 if X is black:
123 n 1
P& =1&=1,...,§,=1)==-—— ... = .

We also know from De-Finetti’s theorem that conditioned on Z, (§; = 1,6 =1,...,&, =
1) are i.i.d. Bernoulli(Z). So
]P)(gl = 1762 = 17' . 7€n = 1) = E(P(€1 = 1762 = 17' . 7571 = 1|Z)) = E(Zn)

Thus E(Z") = =7 = fol x"dx which is exactly the nth moment of the Unif]0, 1] distribution.
Since Unif]0, 1] has an mgf which contains an interval around 0, we get that this completely
determines the distribution of Z to be Unif]0, 1]. O
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Exercise 1.54. (hard) Show that if we start with r red and b black balls then Z (coming
from De-Finetti’s theorem) follows Beta(r,b) distribution.

1.8.1 Further suggested reads (Advanced topics)

Ballot problem Suppose in an election A receives n votes and B receives m votes. The
votes are counted one by one and all orderings are equally likely. Find the probability that
A is always ahead. Example 3.28 (Ed 12), Example 3.27 (Ed 11).

Example 3.28 in 11th and Example 3.29 in 12th edition. Suppose Uy, Us, ... i.i.d.
Unif{0,1]. Let
N=min{n>2:U, >U, 1}/

and
M=min{n>1:U;+...+U, > 1}.

It is shown that N and M has the same probability distribution (which might be surprising!)

Left skip-free random walk. Read Section 3.6.6 in both editions. For connections with
branching processes and this walk, read the paper by M. Dwass called “The total progeny
in a branching process and a related random walk”.

Exercises
1. Let (X,Y) have joint pdf

drx(l—y), O0<zx<l, 0<y<l,
fX,Y(xvy) =

0, otherwise.
a. Find the conditional density fxy(z | y) for 0 <y < 1.
b. Compute the conditional expectation E[X | Y = y].
. Use the law of total expectation to find E[X].
. Compute Var(X | Y =y) and Var(X).

o o

2. Let (X,Y) be discrete random variables with joint pmf

Tty
21

PX =2Y =y) ze{1,2}, y €{1,2,3},
and P(X = z,Y = y) = 0 otherwise.

(a) Find the marginal pmf of Y.
(b) Compute the conditional pmf px|y(z | ).
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(¢) Find E[X | Y =y].
(d) Compute E[X] using the law of total expectation.
3. Suppose X ~Bernoulli(P) where P ~Unif(0, 1).

a. Calculate the conditional density of P given X = 1. Do the same, but given X = 0.

b. Compute also the conditional expectations, E(P|X = 0) and E(P|X = 1). Which
is bigger?

c. Verify that E(P) = E(E(P|X)) using the calculations above.

4. Let X ~ Exp(\) and Y ~ Exp(\2) be independent random variables (with A, Ay > 0).
Consider the event X < Y.

(a) Compute P(X <Y).
(b) Find the conditional distribution of the excess lifetime W :=Y — X given X < Y.
(c) Show that W | (X <Y) ~ Exp(As).

5. Let G(n,p) be the Erdés—Rényi random graph on vertex set [n], where each edge is
present independently with probability p. Fix two distinct vertices u,v € [n].

(a) Compute P((u,v) € E).
(b) Compute the conditional probability

P((u,v) € E | deg(u) = k),

where deg(u) is the degree of vertex w and 0 < k <n — 1.

(c) Interpret the result: does knowing deg(u) = k affect the probability that u is
connected to v?

6. Let (Sn)n>0 be a simple symmetric random walk on Z starting at Sy = 0:
Sp = X1+Xo+ - +X,,, X;~ Rademacher(+1) i.i.d. (another name for Uniform {1, —1}).

(a) Compute P(S,, = k) for —n < k < n with £ =n (mod 2).
(b) Compute the conditional probability

P(X, = +1]S, = k).

(c) Interpret the result: does knowing S,, = k affect the probability of the first step
being +17

7. Let (Sn)n>0 be as in Qn 6. Fix positive integers a,b > 0 and define the stopping time

T=min{n >0:5, =aor S, = —b}.
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(a) Compute the probability that the walk reaches +a before —b: P(S; = a).
(b) Compute the conditional probability

P(X, = +1|S, = a),

where X is the first step.

(c) Interpret the result: how does conditioning on eventually hitting +a affect the
first step?
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2 Markov chains

Roughly speaking, a Markov chain is a sequence of random variables Xj, X1, ... such that
the distribution of X,, given the whole past (that is, Xo, X,...X,_1 ) depends only on the
immediate past (that is just X,,_1).

Definition 2.1. We say (X,,)n>0 is a Markov chain if for alln > 1,
P(X, = j|Xn-1 =1, Xpg = in_1,..., Xo = dp) = P(X,, = j| X1 = 1).

for all ©,7,11,...,1,_1. If the above probability does not depend on n, we say the Markov
chain is time homogeneous. We shorten the notation: P(X, = j|X,-1 = 1) = P for a
time homogeneous Markov chain.

In this section, we will always deal with Markov chains in which the random variables are
always discrete, that is takes values in a finite or countable set. Unless otherwise mentioned
we will take this space (called state space) to be the set of natural numbers N. While the
index n in X, should be thought of as time. For now, we will deal with discrete time Markov
chains, that is n € N.

Our Markov chains will be time homogeneous by default, unless stated otherwise. Notice
that it is clear from the definition that

Py >0, Vi,jeN ;Y Py=1Vi
J
Sometimes it is written as a matrix P with the (¢, j)th entry being P;;. This is a possibly

0o X oo matrix, but dont be alarmed, just treat it like you treat any other matrix for now.
(In reality, this is an operator called Markov operator).

Sometimes a Markov chain can be depicted by a picture as in Figure 4. The Markov

1
0.

0.9

——

©

Figure 2: This Markov chain has 4 states A, B, C, D. The transition probabilities
between states are given by the numbers on the arrows. Note that the sum of the
probabilities of leaving a state must be 1.

®

chain in Figure 4 can be represented by the following transition matrix:
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A B C D

Al 0 05 0 05

P= B0 10 0 0
cl09 01 0 O
D03 03 04 0

In words,
e From A: go to B probability 0.5 or go to D with probability 0.5.
e From B: stay in B with probability 1.0.
e From C: to A with probability 0.9, to B with probability 0.1.

e From D: to A with probability 0.3, to B with probability 0.3, to C' with probability
0.4.

Exercise 2.2.

Write down the transition matrixz for the following Markov chain

0.5 0.4
0.5
0.3
1.0
0.3
Example 2.3. 1. i.i.d. sequence. Any such sequence is clearly a Markov chain. (Exer-

cise: Prove this.)

2. Random walk/ Sequences of heads and tails/ biased walks. Toss a coin inde-
pendently and let Let P(X; = +1) =p=1—-P(X; = —1). Let Sy = Zle X;. Thus
we have

pifs,—s,_1=1
P(S, = $p|Sn-1 = 8n-1,.. ., 51 =81) =P(S, = s,|Sn-1=5n-1) =1 —pif s, — 5,1 = —1

0 otherwise .

Thus a random walk is a Markov chain
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3. Here is another more complicated example.
Suppose S1, 5o, ..., S, be random variables taking values in Z defined such that

n

P(S1 =81,...,5, = 8y) = — HeXp(—A(si —5.1)Y. s €Z Vi

where C,, is a constant which makes the above a joint pmf. To see this, Fix n > 1 and
arbitrary integers si,..., s, with P(S; = s1,...,5, = s,) > 0. For any x € Z we have
P(Sl = S1y..., Sn == Sn»Sn—i-l = ZE)

P(Sl :Sl,...,Sn :Sn)

P(SnJrl:xl51:317--~7Sn:3n):

1 n+1 2
H _+ e—)\(si—si_l)
Cn+1 =1

Ch
e—)x(x—sn)2 .
Cn+1

The factor C,,/C,+1 does not depend on s1,...,S,_1, so the right-hand side depends
on the history only through s,. Writing the normalizing constant

Z(sn) = Z e_A(y_Sn)Q;
YEL
we obtain the conditional distribution in the normalized form

N (p—s )2
e Az—5n)

P(Sn+1:.f|51,...,sn):m,

which depends only on S,, = s,,. Thus the Markov property holds.
In fact this also says more.
4. Define a stochastic process (Y;,),>o taking values in {0, 1} by the deterministic rule
Yn+1 = Yn—l for all n Z ]_,

with some arbitrary initial joint distribution for (Yp, Y1) that assigns positive probabil-
ity to both pairs (0,0),(0,1),(1,0),(1,1) (so all these events are possible). We show
(i) (Y,) is not a Markov chain on {0, 1}, and (ii) the enlarged process Z,, = (Y, Y;—1)
is a (time-homogeneous) Markov chain on {0, 1}2.

(i) (Y,) is not Markov. Suppose, for contradiction, that (Y;,) is Markov. Then for
every n > 1 and every y,y" € {0,1} we must have

P(Yn+1 = y/ ‘ Yn =1, Ynfl,ynfg, . ) = P(Yn+1 = y/ ‘ Yn = y)
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But, by our assumption that all four pairs have positive probability we have both
PYo=1]Y1=0,Y%=0))=PYy=1|Y1=0,Y,=0) =0,

and
PYa=1|Y1=0,Yy=1)=P(Yy=1]|Y1=0,Yy=1)=1.

Therefore the conditional probability of Y5 = 1 given Y; = 0 is not determined by
Y1 alone (it depends on Yj), contradicting the Markov property. Hence (Y;,) is not a
Markov chain on {0, 1}.

(ii) Enlarging the state makes it Markov. Define the two-component process
Zp = (Yo, Yn-1), n =1,
which takes values in the finite set {0,1} x {0,1}. Compute
Zni1 = (Yoi1,Yn) = (Yoo, Yy).
Hence the update of Z,, is deterministic
P(Zn1 = (¢,d) | Zn = (a,b), Zn_1,...) = Lica)=(b,a):

so the law of Z,,; given the entire past depends only on Z,. Therefore (Z,) is a
(time-homogeneous) Markov chain on {0, 1}2.

Conclusion. The observed process (Y,,) is non-Markov, but by enlarging the state
space to include one previous value (forming Z, = (Y,,Y,_1)) the dynamics become
Markov. This illustrates the general principle that adding sufficient past information
to the state can convert a non-Markov process into a Markov chain.

. Urn process. Consider the Urn process discussed in Section 1.7.1. Let

Xn =1 nth draw red .

Is X,, a Markov chain? We saw that it is NOT a Markov chain as the probability we
draw red in n + 1th draw given what we have drawn in the first n draws depend on
the total number of black and red balls drawn in the previous draws. However can we
consider a different random variable (Obviously carrying more information), so that it
is a Markov chain? The answer is Yes. For example R, := Number of red balls after
n draws is a Markov chain. To see this, let Ty = r + b, the initial number of balls in
the urn.

Fix n > 0 and suppose R, = x. Denote the number of black balls after n draws by
B,,; then
B,=T,—R,=(Ty+n)— =,

so B, is determined by x and n.
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On the next draw (going from time n to n + 1) the probability of drawing a red ball is
x x

]P’(drawred|Rn:7“):?:T Y
n 0 n

and the probability of drawing a black ball is
Bn T() +n—x

P(draw black | R, = x) = AR
n 0 n

If a red ball is drawn then
Rn+1 =+ 1,
while if a black ball is drawn then
Rn+1 = X.

Hence the one-step transition probabilities conditioned on the entire past history de-
pend only on r = R,;:

xXr
IF’(Rn+1—:U+1|R0,...,Rn—x)—IP’(drawred|Rn—x)—T0+n,
T _
P(Rus1 =2+ 1| Ro,..., Ry =) = P(draw black | R, = z) = ~or -~
T0+n

and all other transition probabilities are zero. Since the conditional distribution of
R, 11 given the entire history depends only on the current value R, = x (and on the
known deterministic time-dependent quantity 7,, = Ty + n), the process (R,) satisfies
the Markov property.

Therefore (R, ),>0 is a time-inhomogeneous Markov chain with one-step transition
probabilities

z To+n—=x
Pn ) 1) = ) Pn ) = T/
(x,z+1) T n (x,7) T in
We will mostly not be bothered too much with time inhomogeneous Markov chains in
this section. O]

6. In Example 1.34, the position of the walker is a time homogeneous Markov chain.
Exercise: prove this.

7. Self avoiding walk Consider the set of paths of length n in the square lattice which
do not intersect itself. Pick uniformly from this set a path. Let (X, Yx)1<k<n be the
coordinates. Is this a Markov chain? Clearly not as the next step of the chain depends
on the whole past. This is the notorious example of self-avoiding walk, something very
hard to understand. ©.

However if we increase the state space by a lot: (Z; = ((X;,Y;) : 1 < j < k))i<k<n
is a Markov chain. (Exercise: convince yourself, but no need to write a proof at this
point.)

6See https://en.wikipedia.org/wiki/Self-avoiding_walk
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8. Hidden Markov model Consider the previous figure in the Markov chain and color
states A, C' as red and B, D as blue as follows.

N

0.5
0.9

A 0.5
N
0.3
Figure 3: If we are just given the information of the colors, then this is a hidden
Markov model.

Now consider the chain Y,, which gives the color of the state and not the actual state
and suppose Xj is red. Is this a Markov chain? It is NOT a Markov chain as knowing
just the color does not give us information about the transition probabilities. However,
there is a Markov chain hidden underneath this chain which might be put to our use.
This is called a hidden Markov model. Let us prove this.

Assume for contradiction that (Y;,) is a Markov chain. Then there exists a function f
such that for all n > 0,

PYor1 =y Yo=Y, Yo1 =Yn-1,-- . Yo =10) = f(y | yn),
i.e., the next-color distribution depends only on the current color.
Now consider the conditional probability
P(Y; = Red | Y2 = Purple, Y; = Purple, X = A) =0
which follows directly from the transition matrix since once we start from A and go to
a Purple, we must be at B and cannot escape from it.

Next consider.
P(Y; = Red, Yo = Purple, Y} = Red| Xy = A)
P(Y; = Purple,Y; = Red| X, = A)

P(Y; = Red | Y2 = Purple,Y; = Red, X = A) =

From the diagram, convince yourself that

P(Ys = Red, Y, = Purple,Y; = Red| Xy =A4) 05x0.4x0.9
P(Y, = Purple,Y; = Red| X, = A) 05 x0.7

Thus

P(Y3 = Red | Y2 = Purple, Y} = Purple, X, = A)
# P(Y; = Red | Yo = Purple,Y) = Red, Xy = A).
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Since the conditional probability of the next color depends on **the previous state™*
(Y,,) cannot satisfy the Markov property.

Hence, (Y,,)n>0 is not a Markov chain.

9. Increasing state space to Markovify a chain. In the self avoiding walk example,
indeed (X, Y%) is not a Markov chain. However if we take into account the whole

past, then (Z; = ((X;,Y;) : 1 < j < k))i1<k<n is a Markov chain. (Exercise: convince

yourself, but no need to write a proof at this point.)

2.1 Chapman—Kolmogorov equations
We introduce the following notation for n-step transition probabilities:
P(X, = j|Xo =) = pl}.

1 _

Clearly p;;" = pij going back to the previous notation. Now let us compute P2

Py =P(Xy = j|Xo = i)

:Z (Xy =7, X1 = k| Xy = 1)

k=0
k=0

= Z Dk;jDik
k=0

The point of this calculation is to note that pg-) is the (7, j)th entry of the matrix P? (where
we multiply the co X oo matrix just like we multiple a finite matrix.) Thus the matrix

corresponding to the two step chain is P2.
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Actually this calculation can be generalized by iteration. One can have

v

—Z]P n+m—j7 —k‘XO_Z)
3 B(Xim = 31K, = BB, = K%y =
k=0

= Z]P’(Xm = j|Xo = k)P(X,, = k| X, = i) (Here is where we use the Markov property)

= Z% P = (PP
k=0
Using the recursion, we see that :
) = (P");

In other words
Proposition 2.4. We have
P(X, =j|Xo=1) = pgl) = (P");; = ((i,7)th entry of the transition matriz P ).

Example 2.5. Simpler version of Example 4.11, Example 4.12, 11th and 12th edition.

2.2 Classification of states

The states of a Markov chain can be classified to our advantage so as to better understand
a Stochastic process. Consider the Markov chain of the simple random walk in the cycle in
example 1.34. One can consider the same problem but now with two disjoint cycles. Clearly
the walk in one cycle has nothing to do with the other and one can partition the states into
two subclasses one coming from each cycle. The point of this Section is to generalize this
idea.

Definition 2.6. Take two states i,j in a Markov chain. We say j is accessible from i if
pz(;l) =P(X, =j|X, =1) >0 for somen > 0.

This is equivalent to say that there is a positive chance that one can reach state j from
1 eventually. Said otherwise, if j is not accessible from ¢ then

P(X,, = j for some n > 1) = 0 (Exercise: Why?)

For example, if one considers simple random walk on two disjoint cycles, clearly vertices of
one cycle is not accessible from the other cycle.
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Figure 4: This Markov chain has 4 states A, B,C, D. The transition probabilities
between states are given by the numbers on the arrows. Note that the sum of the
probabilities of leaving a state must be 1.

It is important to observe that in order for j to be accessible from 4, one does not require
that there is a positive chance to jump to 7 in one step, one only needs that there is a positive
chance the chain eventually reaches j. For example let us go back to the chain in Figure 4.
Observe that one cannot go from state A to state C' in one step, but can do so in two steps
taking a detour through D.

Coming to the next question: if ¢ is accessible to j is j accessible to ¢ 7 The answer is
not necessarily yes, take for example the chain in Figure 5. Clearly, state C' is accessible
from every other state, but once the chain reaches C, it stays there forever (C' acts like a

cemetery.)
y @
AN
S@

0.3

Figure 5: This Markov chain has 4 states A, B, C, D. The transition probabilities
between states are given by the numbers on the arrows.

This brings us to the following definition.
Definition 2.7. We say i communicates with j both i is accessible from j and vice-versa.
Proposition 2.8. Communication is an equivalence relation. Said otherwise:
a. 1 communicates with 1.

b. If i communicates with j then j communicates with 1.
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c. If i communicates with 7 and j communicates with k then © communicates with k.

Proof. Properties a. follows from the definition (note that we included n = 0 there). b.
follows from definition. For c. apply Chapman—Kolmogorov (Exercise: convince yourself!)

[]

Since communication is an equivalence relation, we can divide the states into equivalence
classes. "

Definition 2.9. We say a Markov chain is irreducible if there is only one equivalence class,
that is, if every state can communicate with every other state.

Example 2.10. Consider the Markov chain with state space

S ={1,2,3,4,5},
and transition matrix

05 05 0 0 O

04 06 0 0 0

P=10 0 03 07 0
0 0 06 04 0
0O o0 0 0 1

Let us find its irreducible classes. Here is the diagram:

0.5 0.6
0.5
0.4
0.7
0.3 0.4 1
odiiso o=
0.6

- From state 1 you can reach 2, and from 2 you can reach 1. Hence {1, 2} is an irreducible
class.

- From state 3 you can reach 4, and from 4 you can reach 3. Hence {3,4} is an irreducible
class.

- State 5 is absorbing, since P55 = 1. Hence {5} is an irreducible class by itself.

Thus the chain has three irreducible classes:

{1,2}, {3,4}, {5}

If you are unfamiliar with equivalence classes read https://en.wikipedia.org/wiki/Equivalence_
relation.
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Example 2.11. State space: S ={1,2,3,4,5,6,7}.

1 2 3 4 5 6 7

1105 05 0 0 0 O O
20 04 0501 0 0 O

p_ 3107 0 03 0 O O O
410 0 0 03 07 0 O
5(0 0 0 02 08 0 0

6/ 0 0 O O 0 10 O
710 0 O 05 0 0 05

(6)o10

Convince yourself that the communicating classes are
{1,2,3;; {455 {6y {7}

2.3 Recurrence and transience

We now want to study if a Markov chain returns to the starting state or not and if so how
many times. To that end define

fi = P( The chain starting from i eventually returns to 7)

Definition 2.12. We say a state i is recurrent if f; = 1 and transient otherwise (i.e. i is
transient if f; < 1).

In Example 2.11, states 1,2, 3,7 are transient, states 4,5, 6 are recurrent (convince your-
self!) We now try to answer the following question: is there an easily testable criterion allows
us to deduce recurrence or transience? This is given by the following proposition:

Proposition 2.13. A state i is

o Recurrent if ¥.°° P = o0
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o Transient if Y., P < .

Before proving the proposition, let us look at a concrete example to gain some intuition
behind the proposition. Consider the finite Markov chain with state space

S ={0,1,2,3}
and transition matrix
012 3
0/0 1 00
P=1/1 000
2/1.0 0 0
310 0 01

Analysis

e From 0 we move to 1 with probability 1, and from 1 we move back to 0 with probability
1. Thus the set {0,1} is a closed communicating class. Furthermore, if we are in this
class, we are sure to return to the starting point. So both 0,1 are recurrent.

e From 2 we move to 0 with probability 1. Since we can never return to 2, state 2 is
transient.

e State 3 is absorbing (P33 = 1), so {3} is a closed recurrent class.

Return probabilities

e For state 0:

(n) 1, n even, > (n)
= — E = OO,
Poo {0, n odd. s Poo

hence 0 is recurrent.

e For state 1: same reasoning as 0

x
2 : (n) _
pll = 00,
n=0
so 1 is recurrent.

e For state 2: we have p{J = 1 and pl) = 0 for all n > 1. Thus

doply =1<o0,
n=0

so 2 is transient.
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e For state 3: pgg) =1 for all n > 0, hence

> ply = o0,
n=0

and 3 is recurrent.

Proof of Proposition 2.13. Note that if a state ¢ is recurrent, it eventually once it visits ¢ the
Markov chain “resets” as if it started from i, so it will again come back to 7. This means
that if a state ¢ is recurrent,

P( chain returns to 7 infinitely often ) = 1

On the other hand, if f; < 1 then once the chain returns to ¢, it has probability 1 — f; to
not return to ¢. In this case, the number of returns is a geometric random variable with
paramater f; (think of tossing a coin with success probability 1 — f;, each toss tells us
whether the chain returns to ¢ or not and we call it a success if the chain does not return to
i eventually). Thus let N be the number of returns to i,

P(N=n|Xo=i)=f""'(1-f), n>1
and thus, using the formula for the expectation of a geometric, we get

1
1—fi
Note that E(N| X, = ) is finite if and only if f; < 1 (we assume 1/0 = 00).
Here is another way to interpret this. Let I,, = 1x,—;. Then N =5 >, I,. Thus

E(N|X, = i) =

E(N|Xo=1i) =E) LlXo=i)=Y P(X,=ilXo=i)=Y P
n=0 n=0

n=0
Thus .
S P =00 e E(N[Xg=i) =00 f; = 1.
n=0
which completes the proof. O

Now we ask the question, if ¢ and j communicates with each other, and if j is recurrent
then is ¢ recurrent? The answer should be “yes” as one can go from ¢ to j in a finite number of
steps and then eventually return to j and then trace back to 7 again using the communicating

property.

Proposition 2.14. If i communicates with j and j is recurrent, then i is recurrent. Conse-
quently, in a communicating class either all states are transient, or all states are recurrent.
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Proof. We know from the definition of communication that there is some %k, m such that
lej > 0 and Pj;" > 0 Thus using Chapman-Kolmogorov equations

- 23

(6) (k+n+m) (k) p(n) p(m) _ p(k) p(m) (n) _
ST s 3SR 5 S RO P - PSPl — o0
n=0 n=0

n=0
since j is recurrent using Proposition 2.13. 0

Proposition 2.15. Every finite state space Markov chain must have at least one recurrent
state.

Proof. This is clear as if every state is transient then the event that
{X,, eventually leaves state ¢ for all 7 in the state space}.

has probability 1. But this set is clearly an empty set. This is a contradiction. O
Combining Propositions 2.14 and 2.15, we obtain the following summary.

Proposition 2.16. e Fvery finite state Markov chain there is at least one recurrent
state.

e [n every finite state, irreducible Markov chain, every state is recurrent.

e Kvery countably infinite state, irreducible Markov chain has either all states
recurrent or all states transtent. We call such chains a recurrent Markov chain
or transtent Markov chain in short.

2.4 Simple random walk on the Z¢ lattice

We will consider the infinite lattice graph Z? for d > 1 which consists of vertices given by d
tuples of integers and two vertices are connected if exactly one of their coordinates differ by
exactly £1. A bit of thought will show that for d = 1 this is simply the infinite path, d = 2
is the square lattice, d = 3 is the 3d grid and so on. The Markov chain we consider is simply
the simple random walk, that is when in a state ¢ = (i1,...,44), it moves to one of it’s 2d
neighbours with probability 1/2d independently of each other. This is clearly an irreducible
chain, so the question is whether this chain is transient or not.

The story goes that Polya was taking a walk in the park in the early 1900’s and saw the
same couple pass by many times although it seemed to be the case that they were doing a
“random walk”. Polya investigated this problem and proved the amazing theorem

Theorem 2.17 (Polya). The simple random walk is recurrent if d = 1,2 and transient for
d> 3.

We will prove this for d = 1,2,3 and leave the rest for you to compute at your leisure
time.
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Dimension 1: This is just a simple random walk in the line. Recall that using Proposi-
tion 2.13, we only need to prove that ) P = co. We do this via direct computation.
Note that if the walk comes back to 0 starting from 0 it needs to perform an even number
of steps. Also if it does s((2) ;'n 2n steps, n steps need to be right and n to the left. The total
|

number of such steps is 77 (think of arranging two types of objects with n objects of each

type ). Also each such path has probability (3)? (whatever the path is). Thus
Py - 2!

Here we use Stirling’s approximation

Proposition 2.18.
n! ~ 27/

where a, ~ b, means that 3> — 1 as n — oo.

Proof. A probabilistic sketch can be found in a Remark in Pg 215 of the book (12th Edition).
O

Using this formula (simply replacing the factorials by this expression), and after a whole
lot of cancellation, we get that

_‘<_>2n ~—

Vs
We know that n% < oo if and only if @ > 1 (If you don’t remember this, recall the series
chapter in calculus, one can show this by comparing with the integral floo w%d:c) Thus

x
Z Pyl = 0.
n=0
and we infer that the random walk is recurrent in d = 1.

Dimension 2: We have the same calculation, but the walk can now go in four directions,
left, right, up or down. Let’s start the walk at (0,0). Also the walk returns to the origin if
for some 0 < ¢ < n, the walk makes ¢ steps to right and 7 steps to left and the remaining
n — i up steps and n — ¢ down steps. The total number of ways this is possible is (again
think of arranging symbols)
(2n)!
ilil(n —i)l(n —q)!

Each path has probability 4%. Using Stirling

n n

on B (2n)! I 2n\, 1 1
P00 = 2 ilil(n —i)!(n —d)l42n 2 n)) T

=0

which again sums to co and hence the walk is recurrent.
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Diimension 3 and higher A similar calculation gives Py0 <
and only if d > 3.

© )d —75 which is summable if

Example 2.19. Let the state space be Z. Define a probability distribution = = (7;),ez by

1 )
T = §2—“', j €.

(Indeed . 271l =1+ 2) 45127"=142-1=3, s0 7 is normalized.)
Define the Markov chain X,, on Z with transition probabilities

Dij = T for all i, 5 € Z.

In words: from any state ¢ the chain next jumps to j with probability 7; (an i.i.d. draw from
7).

Exercise 2.20. Check that P? = P where P is the transition matriz in the above example.

Once we are convinced by the exercise, clearly, (P"); = P; = m;. Thus an1(Pn)ii =
Y n>1 T = 0o. Thus the chain (X,),>1 is recurrent.

Exercise 2.21. Check that Example 2.19 is simply an i.i.d. sequence, with P(X; = j) = ;.

2.5 Stationary distributions

We saw that a communicating class can either be recurrent or transient. Given two recurrent
Marko chains, can we say more about ‘how recurrent’ they are? There is a subtle difference
between Example 2.19 and the simple random walk on Z. Both are recurrent of course, but
the chain on Z is more ‘erratic’ in a certain sense. The difference between these two chains
come from the proportion of time spent at any state. For example, let (S,,),>0 be the simple
random walk on Z, and let (X,,),>1 be the Markov chain in Example 2.19. Suppose we start
both chains at 0. The expected proportion of time spent at 0 is

1 < .
E(— ; Ix,—o|Xo=0)=P(X, =j)=m; >0

On the other hand, by the calculation done before,

”1§(J\/ﬁ

3IH

lek 0[S0 = 0) = ZIP’Sk—O

Thus somehow (S),),>0 is ‘less recurrent’ tha (X,,),>o0.
With this motivation, let

el
S
Bk

—_

N,; = time taken to return to ¢
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then P(N; < oo) = 1. If the chain is transient then P(N; < co) < 1. For a recurrent Markov
chain, we refine the question and ask whether E(N;) < oo or not. This will turn out to be
equivalent to the question that if we have a recurrent Markov chain, the proportion of times
it returns to 7 is 0 or not.

To that end, let for a state j

denote the mean return time.
Also note that the proportion of time spent on a state j can be written as

EZ:O Lx,=
- .
Proposition 2.22. If a Markov chain is irreducible and recurrent, then

p (ZZ_O Lx,= i) _q

Proof sketch. Suppose the Markov chain starts from i. Let T denote the time it takes for
the chain to reach j. Suppose T}, T, ... denote the successive times it goes back to j. Then
we need to compute

n . 1

T}LIEOTO+T1+...+THZT}I—{20%+%'

Note To/n — 0 almost surely. By strong law of large numbers % — E(N;) = m;
almost surely. Thus we have that the limit is 1/m; almost surely. O]

We cheated a little bit in the above proof. The convergence we proved is along a sequence
of random times when the walk returns to its starting point. We can turn this into a full
proof, but we skip it for brevity.

Definition 2.23. We denote by

T, = ——
J
m;

to denote the long run proportion of times a Markov chain stays in state j. Here if
m; = oo we take m; = 0.

Note that
Proposition 2.24. If m; > 0 and i communicates with j then m; > 0

Proof. The proof needs a certain input from Martingale theory which we need, called Wald’s
identity which we will use (but not prove). Let Yy, Yi, ..., Y, be the successive return times
to j when started from j. Let

p=P(X1, Xs,... hits i before j| Xy = j).
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Note since 7 communicates with i, p > 0. Let N be the smallest £ such that ¢ is hit between
times Y,y and Yj. Clearly N is Geometric(p). Then, if we let 7,, denote the expected time
to hit ¢ started from j, then

E(7j;) <E(Yi+...+Yy) = (by Wald’s identity ) E(N)E(Y:) =E(7;;)/p < o

since E(7;,;) = 1/7; < oo Also let n be such that P, > 0 and let A be the event that started
from 7, the chain hits 7 in exactly n steps. Then

E(7;5) 2 B(7;| A)P(A) = (n + E(7:7))P(A).

Since E(7; ;) = 1/7; is finite as j is positive, E(7; ;) is finite also from the above inequality.
Finally
Tid < Tij + Tji — E(T”) < E(T@j) + E(Tjﬂ’) < Q0.

which completes the proof. O

Thus we arrive at the following important corollary.

Corollary 2.25. FEither m; > 0 for all i in a communicating class OR m; = 0 for all i in a
communicating class.

Exercise 2.26. Show that if a state 1 is transient, m; = 0.

Definition 2.27. We say a class s null recurrent if the latter occurs and positive
recurrent if the former occurs. If a Markov chain is irreducible, there is only one commu-
nicating class. If this class is positive recurrent or null recurrent, we say the Markov chain
15 positive recurrent or null recurrent respectively.

Corollary 2.28. A finite, irreducible Markov chain is always positive recurrent.

Proof. This is simply because if it is null recurrent, then m; = 0 for all <. But m; denotes the
proportion of times the chain spends in a state ¢ and hence ) . m; = 1 which is impossible.
There is an exchange of limit in this argument if we go into the details O]

Let us explore some other examples.

Example 2.29. Here is a way to show that the simple random walk on Z is null recurrent
without combinatorics. We will show this by comparing it with the walk in the cycle. Recall
the finite version, which is the cycle example a.k.a. Gambler’s ruin problem (Example 1.34).
Let m; ; ¢, denote the expected time to hit j started from ¢ in the cycle C,,, that is,

m; j.c, = inf{t > 1: SRW at time ¢ is at j},
and let m; ;7 be the same quantity for Z. Note that

1
Mmooz = 1+ §m1,0,z + §m71,0,z
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Also note m;o7z > m;oc, for any n. This is simply because the walks have the same
distribution until either 0 or n is hit. When such an event occurs, 0 may not be hit in Z but
it is hit in C),, thus it takes longer to hit 0 for the walker in Z. Now recall that m; o ¢, was
computed to be i(n — i) in the Gamber’s ruin problem Example 1.34. Thus, we get

mooz > 1+ (n—1)+(n—1)foralln>1.
Letting n — oo, on the right hand side, we get mg = oc.

But how do we compute 7;7 It is usually not so easy to compute the expected return
times. Luckily, we have the following way out.
Note that
Zzzo 1Xk:j _ 1X0=J' + Zz;(l) Zz 1Xk:i:Xk+1:j

n n
Taking Expectation and taking limit (using the bounded convergence theorem)

E(ZZ:O 1Xk=j) _ ZZ:O P(Xk - j) .

n n

Ty
and for the right hand side, exchanging the summation,

> i PXe = 6, Xiwr = 5) 305 3o P(Xort = 1 Xi = OP(X, = 1)

n

n

n
n—1 .
— Z’L Zk:o ( k Z) R] § WZRJ

Thus we obtain the equation
ZmPZj = m; for all states j.

In vector notation, let w = (71,9, ..., ) be the row vector. Then we have
P =m.

where P is the transition matrix. Note that we still treat oo x oo matrices like finite matrices.

Note that 7 equal to the row vector of (s is always a solution of the above equation.
However we are interested in a solution such that ), m; = 1. Such a solution can only exist
if and only if the chain is positive-recurrent as is clear from all the above analysis.

Theorem 2.30. Suppose we are given an irreducible Markov chain. This Markov chain is
positive recurrent if and only if there exists a unique solution of the following equation system

7P =, Zmzl
1

exists. Furthermore, if such a solution exists, it is given by m; = ——.
J
Consequently if the above equation system has no solution, then the Markov chain is

either transient or null-recurrent.
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Example 2.31 (Positive recurrent chain with infinitely many states). Consider a Markov
chain with drift to the left but having a “wall” at 0 where it “bounces off”.
Consider the state space is {0, 1,2,...} and

Dii+1 = D, Dii—1=1—pifti>1
Poo=1-—p if Po1 = P

TP =m., Zmzl

using Theorem 2.30. This gives

We solve now for

Ty = ToFoo + T Pio = mo(1 —p) + mi(l —p) = m =

m = moPo1 + Mo Py = mep+ m(1 —p) = M = (

[terating and using induction, we get (exercise)

_ /. P
Wk—(—l_p) o
Now using ), m =1,
- 1-2
Z(L)kﬁozl = T = P
b= 1P I=p

which is strictly positive if and only if p < 1/2.

One consequence of Theorem 2.30 is that if we can find a solution to the equation system
given there, and the Markov chain is irreducible, then we are guaranteed that the chain is
positive recurrent, and hence in particular recurrent. This is one cheap way to show that a
Markov chain is positive recurrent. Note that we can treat 7t in Theorem 2.30 as a probability
mass function on the state space.

Definition 2.32. Any solution to the equation in Theorem 2.30 is called a stationary
distribution of the Markov chain. If the Markov chain is irreducible and positive recurrent,
such a solution is unique, and hence that chain will have a unique stationary distribution.

We will see in Example 2.34 an example of what happens when the chain is reducible.
There could be infinitely many solutions to the system of equations in Theorem 2.30.

Why is 7 a stationary distribution? Well stationary means something which does not
change, and the object which is stationary here is the distribution of the individual random
variables X, X1, .. ..

Proposition 2.33. Let 7 be the stationary distribution for the transition matriz of a Markov
chain (X,)n>0. Suppose Xo ~ w. Then X, = Xy in distribution for all n > 0.
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Proof sketch. Suppose we pick Xy ~ 7. Then

P(X, = i) = ZIP’(Xl — i| Xy = J)P(Xo = j) = ijPij =m =P(Xo =1).

J J

That is Xy and X; has the same distribution. It is now straightforward to show by induction
that X,, and X, have the same distribution, which is given by 7r. O]

Note that Theorem 2.30 says that if the MC has no solution, then the Markov chain in
particular cannot have a stationary distribution (for example, SRW on Z¢ does not have a
stationary distribution). Furthermore, this theorem says nothing about the case when the
chain is not irreducible. In that case, there could be multiple solutions to the equations, and is
more complicated. In general, the chain will eventually get into one recurrent communicating
class and stay there forever. However, if there are many recurrent classes, then each class
will have it’s own stationary distribution, and the chain in the long run will end up in one of
the classes with some probability. So in the end it will be a convex combination of stationary
distributions, one for each class. The probability with which the chain ends up in a class
depends heavily on the initial configuration. The following example illustrates this point.

Example 2.34 (Stationary distribution space for reducible Markov chains). Consider the
Markov chain with state space S = {1,2,3,4} and transition matrix

10 0 O
05 05 0 0
0 0 06 04
0 0 02 08

Observe:
e State 1 is recurrent: p;; = 1. The singleton {1} is a recurrent communicating class.

e States 3 and 4 communicate and form a recurrent communicating class: transitions
between 3 and 4 never leave {3,4}.

e State 2 can move to 1 or stay at 2, but cannot reach {3,4}; hence {2} is transient and
it eventually reaches the recurrent class {1} with probability 1.

In particular, the chain is reducible: there are two disjoint recurrent classes, A := {1} and
B :={3,4}.

Now let us compute the stationary distribution @ = (7, m, 73, m4) and recall that it
satisfies 7 = 7P and ), m; = 1. Because the chain has two disjoint recurrent classes, any
stationary distribution must put mass only on recurrent classes (probability on transient
states must be zero in stationarity, see Exercise 2.26). Therefore o = 0, and any stationary
distribution is a convex combination of:

e the stationary distribution concentrated on {1}, namely 7Y = (1,0,0,0), and
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e the stationary distribution supported on {3,4}. To find the latter, solve the 2 x 2
balance equations for states 3, 4:

71'3:0.6’7'('3—|—().27I'47 7T4:0.47T3—|—0.87T4, 7T3—|—7T4:1

From the first equation 0.47w3 = 0.274 so w4 = 273. Normalizing 73 4+ 74 = 1 gives

Wi

) Ty =

Wl

Ty =

Thus the stationary distribution on {3,4} is 7(#) = (0,0, %,

wnN

).

Therefore every stationary distribution for the whole chain has the form (for some « €
[0,1])

Ta = a(1,0,0,0) + (1-0a)(0,0,1,2) = (a, 0, 52, 229),

There are infinitely many stationary distributions (non-uniqueness) — exactly the convex
combinations above.

Now let us consider the long run behaviour. Although there are many stationary distri-
butions, the actual limiting distribution of X,, as n — oo depends on the initial state (or
initial distribution) because the chain can be absorbed in different recurrent classes with
different probabilities.

Let A = {1} and B = {3,4} be the recurrent classes. For any initial distribution Xy ~
(where 1 is a pmf on the state space) define

a(p) := P(chain eventually hits A).

Let II; be the long run proportion of time spent at 1 (which is now a random variable)

I —dm with probability a(u)
' 0 with probability 1 — a(u).

(73, m4) with probability 1 — a(pu)

(I3, I1y) = {

0 with probability a(u).

finally Il = 0
Concrete simple case, when X is deterministic:

e Start at state 1: a = 1. Limit is (1,0,0,0).

e Start at state 2: state 2 can only go to 1 or stay at 2, never to {3,4}. Hence a = 1 for
the start 2; limit is again (1,0,0,0).

Wl
wro
N—

e Start at state 3: a = 0; the chain stays in {3,4} and converges to %) = (0,0,

e Start at state 4: similarly a = 0; the limit is 7(5).
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e If the initial law p places mass p on {1,2} (i.e. (1) + u(2) = p) and mass 1 — p on
{3,4}, then a(u) = p and the limit equals

(

1,0,0,0) with probability p,
(OJ 07 %7 %

) with probability 1 — p.

We summarize what we learnt about stationary distributions and long run proportions
in the following proposition.

Proposition 2.35. e Suppose a MC is irreducible. If it is positive recurrent, there is a
unique stationary distribution. The long run proportion of time spent at i is also the
stationary distribution m; at 1.

o [f it is irreducible, transient or null recurrent, there is no stationary distribution and
the long run proportion at every state s 0.

o Suppose a MC' is reducible. Then if all the communicating classes are transient, then
there is no stationary distribution. Otherwise, for positive recurrent class A, we have a
stationary distribution corresponding to that class, call it 4. We can extend ™ to the
whole state space by putting mass 0 to every other state. The stationary distribution of
the original chain is a convex combination of the stationary distribution corresponding
to each class, given by Y , cam?, where cq > 0 for all A and Y- aca = 1. In particular,
there are infinitely many stationary distributions, if there are more than one recurrent
communicating classes.

e The long run proportion of time spent in a state for a reducible MC could be random,
and depends on the starting distribution of Xo. For every recurrent class A, the long
run proportion of time at any state i € A is w* with probability given by the probability
of being absorbed in class A and 0 otherwise.

2.6 Limiting probabilities

We learnt that P(X,, = j| X, =1i) = Pi(jn). Note that as n — oo, this is simply a sequence of
numbers between 0 and 1 (as they are probabilities). Does this sequence have a limit? If so
what is it? We will answer these questions in this subsection.

Let us go back to the simple random walk cycle Example 1.34 a.k.a. Gamblers ruin.
Suppose we want to understand the sequence

P(X,, is even | Xy = 0).
Does this sequence converge? Well, clearly it does NOT. Simply because
P(X, is even | Xy =0) =0

if n is odd, and is 1 if n is even. So this sequence of probabilities is simply the sequence
{0,1,0,1,...} which does not converge.
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Therefore we need an extra assumption. Suppose we have a Markov chain when there is
a state ¢ where the chain can reach in only a multiple of d many steps. If d > 1 for some
such state, we say the chain is periodic. Otherwise, (that is if for all states, d = 1 ) we say
the chain is aperiodic. More precisely, let

Qj ={n: P} > 0}.

If Q; = {kd:k > 1} for some d > 1 we say the state j is periodic. On the other hand if
d = 1, the state is aperiodic. The smallest number d we can find is simply ged (Q;). It can
also be shown that

Lemma 2.36. Periodicity is a class property.

Proof. Take 7, 7 in a communicating class. By definition of communication, find r, ¢ > 0 such
that P/, > 0 and Pfi > 0. Let m =r + /. Note that Q; + m C Q; where Q; +m is obtained
by adding m to every element in Q;. Also m € Q; N Q;. Thus if every element of Q; is kd
for some d > 1, every element of Q; must also be kd for the same d > 1. Thus ged (Qj) >
ged (Q;). Re applying the same argument, reversing the roles of ¢ and j, we get ged (Q;) >
ged (Q;). Thus ged (Q;) = ged (Q,) concluding the proof. ]

Thus, as before, we can talk about an irreducible Markov chain being periodic or aperi-
odic.

For Markov chains, aperiodicity is simply a nuisance. one can make the chain aperiodic by
modifying the transition probabilities as follows. Toss a fair coin independent of everything
else. If heads comes, the chain stays put does not move. If tail comes, the chain moves
according to the Markov chain. Let Xy, Xi,... denote the original chain and XO,)Z], .

denote the modified chain. Let us compute the new transition probabilities Pj;: of the
modified chain. If j # ¢, then the coin toss must produce tails. Thus

Pz‘j = ]P)(jﬁ = j|Xo =1) =P(X; = j, coin toss tails| Xy = 7)
1
= P( coin toss tails)P(X; = j|Xo =1i) = §pij.

On the other hand if ¢ = j then two things can happen. Either the coin toss is heads, or
the coin toss is tails and the chain moves from ¢ to i. Thus

P =P(X, =i| Xy =i) = P(X; =i, coin toss tails| Xy = ) + P( coin toss heads)

1 1
= Pyt
2 + 2
Check that the new matrix can be written as
-1 1
P=—-1+-P
2 + 2

were [ is the identity matrix (with the usual interpretation of a matrix when we have infinitely
many states).
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Example 2.37. Recall example 1.34, but fix n = 2, that is, we are on a two cycle (i.e. a
cycle with two vertices). Let us now make the chain lazy and compute P" and its limit as
n — oo.

The transition matrix is

5 (33
(i 1)
Also,
(- ( ()
by e )T
Hence P? = P.

Higher powers. Since P2 = P, we have P® = P2P = PP = P, and by induction
pr=p for all n > 1.

The following theorem now shows that aperiodicity is enough to prove convergence in
distribution of the Markov chain itself.

Definition 2.38. We say an irreducible, positive recurrent Markov chain converges to its
stationary distribution 7 if for any starting state 7,

P(X, =i|Xo=j) = (P")ij —— m. for all i,j in the state space.
n—oo

It turns out that aperiodicity is enough for a Markov chain to converge to its stationary
distribution.

Theorem 2.39. An irreducible positive recurrent Markov chain converges to its stationary
distribution m if and only if the Markov chain is aperiodic.

Proof Sketch. The proof of convergence uses something called the renewal reward theorem,
which we skip. We will argue only the part where we show that if the limit exists, then the
limit must be 7.

Suppose
= lim P(X,, =)

n—oo

]P)( n+1_] Z

exists for all j. Then

taking limits,
=2 b

Also >, P(X,, =4) = 1, thus taking limits, ) . o; = 1 Since the chain is irreducible, positive
recurrent, the chain must have a unique solution 7 which means «; = m; for all . O
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2.7 Time reversal

Suppose we show a simulation of a simple random walk. Can you tell whether the movie is
going backward or forwards? If we run the movie backwards, do we still get a Markov chain?
In this section, we answer these questions.

Proposition 2.40. Running backwards a Markov chain gives us a Markov chain, meaning
that if Xo, X1,..., is a Markov chain, (X, Xpn_1,...,) is also a Markov chain.

Proof. We have to show that
P(Xn = 7:|Xn+17X'rL+27 . ) - P(Xn == Z‘Xn+1)

That is conditioned on X,,.1, X,, is independent of X, .o, X,,13,.... Said otherwise, we need
to prove conditioned on X, 1, X, 192, X,43, ... is independent of X,, (if A is independent of
B, then B is independent of A). But this is true since X is a Markov chain. n

Suppose we start an irreducible, aperiodic Markov chain from stationarity (or “equiva-
lently” start the chain after running it for a long time). Are we able to tell if it runs forward
or backward? For example consider the simple random walk on a cycle Example 1.34 and
start at stationarity : Xo ~ Unif{0,1,...,n — 1}. A simple calculation shows that for any
sequence ig, i1, ..,0, where i, = i1 =1 mod n (a sequence which the random walk can
possibly take),

11
P(Xo=10,..., X, =1,) = —on = P(X, =in, Xpn1 =in_1,-..Xo =1p).
n n
In other words, the reverse walk has the same distribution as the forward walk, hence it is
impossible to tell whether the movie has run forward or backward.
But in general how can we tell? Let us find calculate the transition probability matrix

Q of the reverse process.

]P)(Xn-l—l =1, X, = ]) ]P)<Xn+1 = Zan — ])P(Xn = ]) _ 7Tiji

7;‘ prm— ]P> Xn prm— ] Xn = ) = " = " =
Qs ( I Xnsr = 1) P( X1 = 1) P(X,1 =1) i

as long as the chain starts at stationarity.

Exercise 2.41. Show that Q;; is a stochastic matriz, that is Zj Qi = 1 for alli and Q;; > 0.

Definition 2.42. We say a Markov chain with stationary distribution 7 is reversible if
Qij = P = mP;; =mjPj;. for alli,j.

The condition
miPj = mi Py for alli,j

1s called the detailed balance condition.
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Sometimes, a stationary distribution can be hard to compute by solving the linear equa-
tions given by Theorem 2.30. Nevertheless, given the description of the chain, sometimes it
is intuitively clear that the chain is reversible, and then there is an intuitive guess for the
stationary distribution 7r. If both of these criterion are true, then it is easy to verify that
m; is the stationary distribution, and the chain is reversible simply by checking the detailed
balance condition.

Corollary 2.43. Suppose we have a sequence of numbers o = (;); such that ), a; =1
and o satisfies the detailed balance condition, i.e.,

a; Py = o Py for all i,
Then o is a stationary distribution for the chain and the chain is reversible.

Proof. Sum over j to check that a is a stationary distribution. Once this is shown, the chain
is reversible since it satisfies the detailed balance condition. O]

Example 2.44. Consider the following transition matrix

0 01 09
P=109 0 0.1
0.1 09 0

One can check that the chain is simply a like a cycle with a bias in one direction. This should
not be reversible as the chain makes more moves in one direction than the other (and hence
one can guess that whether the movie of the chain is running backwards or forwards). One
can easily calculate that mg = 7 = m = % and this gives @);; = P;; from the formula. Thus
the reverse chain matrix Q = PT.

Example 2.45. Consider a single-server queue (such as a line at a coffee shop) modeled as
a discrete-time Markov chain. Let the state space be

S={0,1,2,...},
representing the number of customers in the queue. At each time step:

e With probability p, a new customer arrives and the queue length increases by 1.

e With probability ¢, a customer is served and the queue length decreases by 1, unless
the queue is empty.

Thus p+ ¢ < 1. Assume p < ¢. This is now a lazy version of Example 2.31. The transition
probabilities are thus

P(i,i+1) =p, P(i,i-1)=gq,  p(i,i)=1-p—qfori>1, P(0,0)=1-p, P(0,1)=p.
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Stationary distribution. If p < ¢, the chain is positive recurrent, and the stationary
distribution is geometric:

m:(z_?) 7P >0, 0<p<q (2.1)
a) 4

This is left as an exercise. Let p = p/q. To check reversibility, consider the detailed balance

condition:
w(i)P(i,i +1)=n(i+ 1)P(i+1,7) forall i >0.

Compute the left-hand side:

m(i)P(i,i+1) = (L= p)p' - p=p(1 = p)p’,
and the right-hand side:

m(i+ DP(i+1,4) = (L= p)p™ - q=q(1 = p)p"™" = p(1 - p)p'
Hence, the chain is reversible.
There is yet another a way to check reversibility without computing 7.

Theorem 2.46 (Kolmogorov’s criterion). A stationary Markov chain for which P;; = 0
whenever Pj; = 0, is time reversible if and only if starting from state i, any path back to i
has the same probability as the reversed path, that is,

P, Py - . Piyi = Py B By

142 * * klk—1 °*

for all v,iq,..., 0.

P,

Proof. Let ig = ipy1 = ¢. If the chain is reversible, we know m; P ;. = 7, P, i, multi-
plying this equation for all 0 < j < k we see that the m; s cancel and we are left with the

above equation. For the reverse, summing over all possible values of 7, 1s,...,7x_1, we get
using Chapman Kolmogorov that Pl(li)Pw = Py, Pl(kkz) Keeping i;, = j for some fixed j for all
k and taking & — oo, we see that m;P;; = m; F;; and we are done. O

Here is a slight generalization of Corollary 2.43.

Proposition 2.47. Consider an irreducible Markov chain with transition probabilities P;;.
Suppose we can find positive numbers m; summing to 1 and transition probability matrixz )
such that

miPij = miQji-
then Q) is the transition probability matrix of the reversed chain and 7; is the stationary
distribution for both the forward and the reverse chain.

Proof. Sum over i, the left hand side. We get m; = > . m FP;;. There is a unique solution to
this equation which is the stationary distribution by Theorem 2.30. The rest is immediate
from definition of the reverse chain. m
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Example 2.48. Consider a single bulb whose age is counted in discrete time steps. Let
Xt€N0:{0,1,2,...}

denote the age of the bulb at time ¢. Each bulb fails independently with probability o € (0, 1)
at each time step. When a bulb fails, it is immediately replaced by a new bulb whose age
starts at 0. Assume the lifetimes of the bulbs are independent.

Forward Transition Probabilities The forward chain (X;):>o has transitions

i+ 1, with probability 1 —a (bulb survives)

Xi=1 — ) . .
0, with probability @  (bulb dies)

In matrix form, the transition matrix is

a 11—« 0 0
o 0 1l—a 0

P=|« 0 0 1 -«
« 0

Guess for the Reversed Chain Assuming that each bulb has an IID geometric lifetime,
a natural guess for the reversed chain is:

1, j=i—1, i>1 (counting age backward)
Qi,j) =qa(l—a), i=0, j>0 (jump to previous bulb’s age)

0, otherwise.

Detailed Balance Equations The stationary distribution 7 satisfies

Compute Stationary Distribution For:>1and j =17+ 1:
(i) (l—a)=7(+1)-1 = w(i+1)=1-a)r()
Iterating gives a geometric distribution:
7(i) = (1 — a)'w(0), i>0.

Normalization » ., 7(i) = 1 gives

70> (- a) = w(o% 1 — 1(0)=a

Hence the stationary distribution is

7(i) = a(l —a)’, i>0.
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Verification - For i > 1:

m(1)Q(i,1 — 1) =7(i) - 1 = m(0)
-Fori=0and 5 > 0:

m(j)P(5,0) = m(j)a = (1 — a)!7(0)ar = 7(0)Q(0, j)

All detailed balance equations hold, confirming that our guess for the reversed chain is
consistent.

Summary
e Forward chain: ¢ — ¢ + 1 with probability 1 — «, or ¢« — 0 with probability «
e Stationary distribution: 7 (i) = a(1 — a)°

e Reversed chain: i +— i —1for i > 1; 0 — j ~ Geom(a)

2.8 Branching processes

Branching processes are used to model the growth of a population. Suppose we start with a
single individual of a certain specie who gives rise to Z many offsprings where Z has some
pmf given by

P(Z =i) = p; for i > 0.

Call this offsprings members of generation 1. Next, each offspring of generation 1 gives rise
to a certain number of offsprings distributed as Z and these are independent of each other.
Let X,, be the number of offsprings in the nth generation for n > 0 with Xy = 1. This is
clearly a Markov chain with state space being the space of natural numbers N.

We are interested in the question: does the specie die out? If so, can we compute/estimate
its probability?

Notice that the Markov chain is not irreducible, because once X,, hits 0, it remains at
0. Assume py > 0 (since if py = 0, the specie never die out for sure.) In this setup, 0 is a
recurrent state and every other state is transient (check!).

We want to compute

P(X,, = 0 for some n > 1| X, = 1).

A good way to approach this problem is analytically. Consider the following generating
function of Z

pz(s) =E(s7) = > pas”.

Clearly, the radius of convergence R satisfies R > 1 as for any s with |s| < 1,

pz(s) < ZPHS!” < an =1.
n=0 n=0
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Fact. Using Abel’s theorem ®, one can show that py(s) satisfies

lim pz(s) = pz(1) = 1.

s—1—

In particular, pz(s) is continuous inside [0, 1].
Just like moment generating functions, generating functions are very useful when adding
independent random variables. Let ¢(s) = pz(s). if X,Y are i.i.d ~ Z, then,

px+y(s) =E(s*) = E(s7s") = E(s7)E(s") = ¢*(s).

We used independence of X and Y in the third equality.
Ok now what is happening in the branching process at hand? Note that simply

px,(8) = pz(s).

But we can write
X1
Xo=)Y Zy
i=1

where Z7; are i.i.d. and distributed as Z by the defnitiion of the branching process. Notice
that the number of terms is random. But we can compute the generating function by
conditioning on X;. For each |s| < 1,

pro(s) = B(s™2) = E(sXi %) = EE(ESS 20 | Xp) = E(p(s)) = ¢ o ¢(s).

[terating this, we can get
px,(s) =popo... op(s)

NV
n times

What happens to P(X,, = 0) as n increases? Clearly if the population has died out in
step n, X,+1 = 0 is trivially true. Thus {X,, =0} C {X,,4+1 = 0}. Thus

{Population eventually dies } = {X,, =0 for some n > 1} = U,>{X,, = 0} = lim {X,, = 0}.
- n—00

Said otherwise, P(X,, = 0) is non-decreasing, therefore must have a limit. Let d,, = P(X,, =
0) and d = lim,,_,, d,. Clearly d,, € [0, 1] and hence so does d.

Let p# > 0 be E(Z). Clearly,

E(X>) = E(Z Zy;) = E(E(Z ZulX1)) = E(uX1) = i,

[terating, we can see that

8see Wikipedia or google ‘Abels theorem’.
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So if p < 1, E(X,,) — 0 and

E(X,) =Y jP(X.=j) =) P(X,=j)=1-P(X,=0)

j>1 j>1
Thus P(X,, = 0) — 1 since E(X,,) — 0. In other words,
Proposition 2.49. If u < 1, the population dies out with prob 1.

In fact it can be shown (but is not straightforward) that if 4 = 1, the population also
dies out, and if u > 1, the population has a positive chance to survive. But we will not
show these and actually argue how to explicitly compute the probabiliity of survival (which
is very surprising at first glance.)

Note that by continuity of ¢ inside [0, 1],
p(dn) — ¢(d).
But

d= lim d, = lim d,,,; = lim popo...0p(0) = lim p(popo...0p(0)) = lim p(d,) = ¢(d).
n—oo N—>00 \§ 4 n—oo .

n—o0 n—oo

v vV
n + 1 times n times

Theorem 2.50. The extinction probability of a branching process is given by the smallest
positive solution of

d = (d).

Thus by plotting ¢(s), once can find the extinction probability.
Note that ¢ must satisfy:

o ¢(1) = E(X),
e p(1)=1

e ¢(s) >0 for all s,

o ¢'(s) >0 forall 0 <s <1 (so¢ is convex).

It is now a calculus exercise to convince yourself that if ¢'(1) > 1, then d* < 1 and when
¢'(1) < 1 then d* = 1 where d* is the solution to the fixed point equation p(d) = d.

60
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Figure 6: The red curve is a branching process which has extinction probability 1.
For the blue one, the extinction probability can be calculated by computing the z-
coordinate of the point of intersection of the blue curve with the black straight line

Yy = .

Exercises

1. Consider a Markov chain with state space S = {0, 1,2, 3,4} and transition matrix

o 1 2 3 4
05 05 0 0 O
0 04 06 0 O
P= o 1 0 0

=W N = O

0
0O 0 0 03 07
0 0 0 06 04

(a) Draw the transition diagram of the Markov chain.
(b) Identify the communicating classes.

(¢) Determine which classes are recurrent and which are transient.

2. Consider a lazy simple walk on the cycle of length 2 (see Example 1.34), where the
walker stays put in a vertex with probability p and with probability 1 — p it does a
simple random walk step. Prove that lim,, ., P" is the 2 x 2 matrix with all entries
equal to 1/2.

3. Consider a Markov chain with state space
S ={0,1,2,3,4}

and transition matrix

o 1 2 3 4

005 05 0 0 0

p_ 1105 05 0 0 O
20 0 04 06 0
310 0 06 04 0
410 0 0 0 1
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a) Identify the communicating classes.

(
(

)

b) Determine which classes are recurrent and which are transient.

(c) For each recurrent class, compute the stationary distribution.
)

(d) Suppose the chain starts in state 0. Compute the limiting probabilities for
each state.

4. Consider a Markov chain with state space

S=40,1,2,3}
and transition matrix
o 1 2 3
0105 05 0 O
P= 1102 03 05 0
210 0 04 06
310 0 03 0.7

(a) Identify the communicating classes.

(b) Determine which classes are recurrent and which are transient.

()
)

(d) Suppose the chain starts in state 0. Compute the limiting probabilities for
each state.

Compute the stationary distribution for each recurrent class.

5. In Example 2.31, check that the stationary distribution is given by the formula in (2.1).

6. Consider a single bulb whose age is counted in discrete time. Let
X, €Ny ={0,1,2,...}

be the age of the currently installed bulb at time ¢. Assume the lifetimes of the bulbs
are independent. Two mechanisms can reset the age to 0:

e The bulb fails at a step with probability a@ € (0,1) (independently each time).
Then it is replaced immediately by a new bulb.

e The bulb is preventively replaced at a step (if it did not fail) with probability
re0,1).

a) Write the transition matrix for (X);>o.

b)

(¢) Solve for the stationary distribution by enforcing detailed balance.
)

(
(

Guess the transition probabilities for the reverse chain.

(d) Compute the reversed-chain transition probabilities explicitly and verify detailed
balance.
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7. A single lightbulb is being observed in discrete time. Let the state space be
S ={0,1,2,3},

where where 0 means a brand new bulb was just installed, 1,2 are possible ages of the
current bulb, and 3 represents a short “repair delay” period after failure before the
next bulb is installed. The dynamics are as follows:

e From agei € {0, 1}, the bulb either survives (goes to i+ 1) with probability 1—p;,
or fails (goes to delay state 3) with probability p;.

e From age 2, the bulb always fails next.

e From the repair delay 3, a new bulb is installed with probability r, returning to
0; otherwise the system remains in delay state 3 with probability 1 — r.

Assume all parameters are in (0, 1).

(a) Show that the chain is irreducible and aperiodic.
(b) Using Kolmogorov’s cycle criterion, test whether this chain is reversible.

(c¢) Explain in words why the chain intuitively should or should not be reversible.
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3 Poisson processes.

We learnt before that Binomial and Poisson distribution are intimately related. In par-
ticular if we have a Bin(n, A\/n) then it is approximately Poisson(A). As it turns out this
approximation is very useful and makes the math intricate. Here is another observation.

Lemma 3.1. Let X ~ Geom (A/n). Then for all x > 0,

lim P(X/n > 2) =e ™ =P(Y > x).

n—oo

where Y ~ Ezp(\). In other words, X/n converges to an Ezponential (X\) random variable
(the proper sense of convergence is convergence in distribution.)

Proof.
P(X/n>z)=P(X >nz)= > (1-\/n)l=
k=|nz|+1 n
— (1 o )\/n)na:-l-l
— e
as n — o0. O

Imagine dividing [0, 1] into n equal subintervals and then coloring each endpoint of the
interval red with probability A/n independently. Then if we start from 0 and look at the
endpoints from left to right, what is the number of points must we look until we find a red
point? It is equivalent to tossing i.i.d. coins with probability of heads being \/n and then
waiting for heads. The waiting time we know is Geom (A/n). As n — oo, the endpoints of all
intervals “converge to he continuum interval [0,1]” in some intuitive sense and by the above
lemma, the interspacing between the red points are simply Exp(A). On the other hand, the
number of red points in an interval is simply Poisson(\) and the number of red points in two
disjoint intervals are independent. Thus process is simply going to be the Poisson process,
and this two different ways of looking at the same process is going to be very important in
crunching out the math.

3.1 Properties of Exponential random variable

It is now hopefully clear that Exponential random variable plays a crucial role in the study
of Poisson processes. Let us list some properties of exponential random variable. Let X ~
Exp()).

a. First of all recall the density

Frlt) = Ae ™ when z > 0
e 0 when z < 0.

64



and the cdf

Fx(z) =P(X < z)

B 1—e* when z >0
)0 when z < 0.

Or in other words,

e ™ when z > 0

1_FX(QS):]P)(X>:U):{Owhenaz:<0

b. E(X) = 1. Var(X) = 3.

c. (Memoryless property). We already encountered this in Section 1, but still let’s quickly
recall. Exponential distribution has “no memory”. This means that if someone tells you
that X > s then the conditional distribution of X conditioned on X > s is the same as
s+ X. Let us see why.

P(X > t —A(s+t)
PX >s+tX >s)= (X>s+):e — = e M
S e~

d. If Xy,..., X, are i.i.d. Exp (\) then
X1+ ...+ X, ~ Gamma(n, \)

where Gamma(n, \) has the density

7t = (3.1)

Ae MO 1 > 0
0if t < 0.

Exercise 3.2. Show this using moment generating functions of Exp(\) and I'(n, \) and
use the fact that adding independent random variables correspond to multiplying the mo-
ment generating functions.

e. Suppose Xi, Xo, ..., X, be independent with X; ~ Exp(}\;) then
Y =min{Xy,..., X, } ~ Exp(A + ...+ \).
Exercise 3.3. Show this by writing
PY > z) =P(min{Xy,..., X} >2) =P(X; > 2, Xo >x,..., X, > ).
f. Suppose X1, Xs, ..., X, be independent with X; ~ Exp();). Then

i

P(XZ = min{Xl, ce ,Xn}) = Zn—z)\k
k=1
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Show the above as follows. First, suppose n = 2. Then

P(X1 = min{ Xy, X»}) = P(X; < X))
A A
Ae M \e 2 dud _/ L—e M) e My =1— —2— = ——.
/ / e © o (L= e ey M+ At A

For the general case, note

and then use the fact that X; and min;.; X; are independent exponential with parameters
Aiand 3, Aj respectively using property e.

3.2 Definition of Poisson process

Recall the intuition at the beginning of the section which gives us the description of the
Poisson process, namely we have a clock which rings after exponential (A) amount of time
and the intervals between successive rings are independent. Then if we count the number
of rings then we get a function (N (t)):>o which simply gives us the number of rings which
have occurred up to time t.

In mathematics, when setting up one likes to come up with a general, compact and
abstract definition of the process we care about and start with that to build the theory . We
will do exactly this here.

So forget what has happened so far and we start fresh with the following definition. We
will see later that how all the intuition that we have built so far will fall into place under
this few lines (very similar to poetry).

Definition 3.4. A stochastic process {N(t) : t > 0} is said to be a counting process if it is
non-negative integer valued, non-decreasing and for s <t, N(t) — N(s) counts the number
of “events” which happen between times s and t.

Some examples of counting process:

e Number of cars crossing an intersection.

e Number of people born up to time ¢ since the beginning of time.

e Number of tweets by Trump up to time ¢ with ¢ = 0 being the start of his presidency.

e Number of people in a bus is at time ¢ is NOT a counting process (since it might
decrease.)

Definition 3.5. A function (N(t)):>o is a Poisson process with rate X\ if the following holds:

(i) N(0) =
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(11) {N(t) : t > 0} has independent increments, meaning that the number of events that oc-
cur in disjoint intervals of times are independent. More precisely, if [s1,t1], [S2, t2], - - -, [Sn, tn)
are disjoint intervals then (N(t1) — N(s1)),..., N(t,) — N(s,) are independent.

(iii) For allt >0,
P(N(t+h) — N(t) =1) = Ah+ o(h).

Here o(h) is a function f(h) so that

)
pm == =0

For example, f(h) = h? is o(h), but f(h) = h or f(h) =log(h) is not.

(iv) P(N(t 4+ h) — N(t) > 2) = o(h). This tells two events occurring in a small interval is
much smaller than the length of the interval.

A few words about the o(h) notation. If two functions are o(h) then their sum or differ-
ences or constant multiples are also o(h). For example, if f(h) = o(h) and g(h) = o(h), then
for some constant ¢ € R,

cf(h)

lim =0 and lim ——= = 0.
h—0

h—0

f(h) + g(h)
h

Lemma 3.6. If we start counting at any time s > 0, then what we get is also a Poisson
process, namely
{Ns(t) :t >0} ={N(t+s)— N(s):t>0},

18 a Poisson process.
Proof. Check that all the axioms in Definition 3.20 are satisfied. O

Now let us check how to get back that the distribution of the intervals between the events
are i.i.d. exponential. Let us start with the first interval:

Ty :min{t > 0: N(t) = 1}.
Proposition 3.7. T} ~ Exp()\), that is,
P(Ty >t) =e .

Proof. Note
{Th >t} ={N(t) =0} = P(T} >t)=P(N(t) =0)

Now let us analyze the function
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We want to understand Py(t + h) — Py(t) for small h as that will give us the rate at which
this function is decreasing (why is this function non-increasing). Note

Py(t+h) =P(N(t+h)=0)
=P(N(t+h)— N(t)=0,N(t) =0)
=P(N(t+h)— N(t) =0)Py(t)

= Py(t)(1 — Ah 4+ o(h)).
Thus

Po(t + h) — Py(t) o(h)

h)'

Taking limits as h — 0, the left hand side converges to Pj(t) and the right hand side converges
to —FPy(t)\. Thus overall, we have

Pl(t) = —Py(t)A.

This is an ODE, which we can solve to get

— ) — /Os‘l(%((f))) _ —)\/Osdt s In(Py(s)/Po(0)) = —As.

But Py(0) =P(N(0) = 0) = 1. Thus exponentiating,
Py(s) = e, s>0
which is what we want. [
Now let us look at the other intervals between events. To that end, define
T,, = time interval between the n — 1th and nth event.

Since given Ty = s, {Ty > t} is simply describing the situation when no event has occurred
in (s, s+t] which is independent of what has happened in the interval [0, s). Also since Ny(?)
is also a Poisson process with the same rate (Lemma 3.6), T, has the same distribution as
T,. This shows that

Proposition 3.8. 171,75, ... are i.i.d. Ezp(\)

For those of you with a rigorous bent of mind, this might seem a bit “hand-wavy”.
However, this can be made completely rigorous (we skip the rigorous proof).

How about the number of events occurring in an interval. If our intuition was correct,
this must be Poisson(\). Let us show this.
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Proposition 3.9. Let (N(t))i>0 be a Poisson process with rate A\. Then

67/\t<>\t)n
PN (1) =n) =
or, said otherwise, N(t) ~ Poisson (At).
Proof. Let T1,T5, ... be the intervals between events and we know from Proposition 3.8 that

they are i.i.d. Exp(A). Let
Sp=T1+To+...+T,.

By (3.1), we know that S,, has density of a Gamma (n, \) random variable:
S YAC
fo (1) = Ae = ift>0
. 0ift <O0.

Note that N(¢) = n means that S, < ¢ and T,,4; > ¢t — S,. Thus we can condition on S,
and write

(As)" !

(n— 1)!d8

t

P(N(t) =n)= / P(N(t) = n|S, = s) e

0
But now,
since the increments are independent and 7}, follows an exponential () distribution. Plug-
ging this back,
t n—1 —Aty\n t —Atyn 4n —A n
/ o Mt=5) \ g As (As) ds — e M\ / 1dg — e M t_ _¢€ L)
0 (n—1)! (n—=1)"J, (n—1)!n (n)!

as desired. O

Summary and properties of Poisson processes For a Poisson process with rate A,

e The number of “events” in an interval (s, s + t) is distributed as Poisson(At).
e the intervals between events are i.i.d. Exp(\).
e Total time elapsed until n events is Gamma(n, \).

e For any interval (s,t), N(s +t) — N(s) ~ Poisson(At). Note that this denotes the
number of “events” in an interval and only depends upon the length of the interval
and not the location (think of the analogy of colorings of intervals again given at the
beginnning of the section and it will be clear why this is true.) Such a property is
called stationary increments.

Example 3.10. Suppose that people arrive into a store according to a Poisson process with
rate 5 per day.

1. What is the probability that exactly 10 people arrive in 2 days?

2. What is the probability that no one arrives for the first 3 days?
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Solution. For the first one: P(N(2) = 10) = 6_10% (probabiliy that a poisson with

A=2x5=10is equal to 10) Second one: P(T} > 3) = e >*3 = ¢~ 15,

3.3 Poisson thinning.

Proposition 3.11. Conversely, suppose N(t) is a Poisson process with rate . Now suppose
for each “event”, we color it red with prob p and blue with prob 1 — p independently. Let
Ni(t) be the number of red events and Ny(t) be the number of blue events up until time t.
Then (N1(t) and No(t) are independent Poisson processes with rates Ap and A\(1 — p).

Proof. First we show that Nj(t) is a Poisson process, and the way to do it is to check
the axioms. Clearly Ni(t) > 0 and has independent increments, as the number of red
events in disjoint intervals can be obtained by first conditioning on the number of events in
the intervals and then coloring them red or blue independently. To be more precise, take
intervals (s,t) and (s',t') and then the number of red points in (s,t) and (s',t') are simply
Bin(N(s+t)— N(s),p) and Bin(N(s'+t') — N(s'), p) where the Binomials are obtained by
independent coin tosses. Thus they are independent. Finally, we show the third property
for t = 0, without loss of generality to make the notations less heavy

P(Ny(h) =1) =P(N(h) = 1,N1(h) =1) + P(N(h) = 1, Ny (h) > 2)

P(Ny() = 1IN () = DB(N(R) = 1) + B(Ni() = 1[N () > 2)B(N(B) > 2))
p(Ah + o(h)) + o(h)

= pAh + o(h).

Also
P(Ny(h) > 2) <P(N(h) > 2) = o(h).

Thus Np(t) is a Poisson process with rate Ap and exactly for a similar reason Ny(t) is a
Poisson process with rate A(1 — p). Recall here that to prove (N;(t)):>o for i € {1,2} are
independent as processes, we need to show that for any tq,..., %, the joint distribution of
(Ny(t1), Ni(t2), ..., Ni(tx)) and (Na(ty), Nao(ta), ..., Na(tx)) are independent. To that end,
since Ni(t') — Ny(t) is independent of the ‘events’ (N(t));>o outside the interval (¢,¢') it is
enough to prove that Ny (t') — Ny(t) is independent of Ny(t') — Ny(t) (convince yourself that
this is the case). To prove the latter, go back to Exercise 1.42 and example 1.41. O

Corollary 3.12. Suppose (Ni(t))i>0 and (Na(t))i>o are two independent Poisson processes
with rate Ay and Xo. Then (N(t)) := (N1(t) + Na(t))i>0 is a Poisson process as well, with
rate A\ + As.

Proof. This follows from Proposition 3.22. Indeed, consider a Poisson process (X (t)):>o of
rate A\; + \o. Color every event independently red with probability A;/(A; + A2) and green
with probability As/(A; + A2). Using Proposition 3.22, we know that the red process is
Poisson process with rate A; and the green process is a Poisson process with rate A9, and
they are independent. Since X (t) = Ny(t) + Na(t), (X (£))>0 = (N(t))s>0 in distribution.
Thus N (t) is a Poisson process with rate A\; + As. O
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Example 3.13. Suppose that people arrive into security check in an airport rate 5 per
minute. Suppose each person is given a random special security check by tossing a coin with
prob 0.2

1. What is the probability that exactly 10 people were given the random special check in
30 mins?

2. What is the probability that no one is given the random special security check in 15
mins?

Solution. The number of people getting security checks is a Poisson process with rate
10

5x 0.2 = 1. Call it Ni(t). For Thus we want P(N;(30) = 10) = e~ *E%_  Second one:

P(T, > 15) = e~ 1.

Example (Photon Detection). Photons arrive at a detector according to a Poisson
process with rate
X = 10° photons per second.

Each photon is independently detected with probability p = 0.8, and missed with probability
1—p=0.2
Let N(t) denote the total number of incident photons up to time ¢, so that

N(t) ~ Poisson(At).

Let Nget(t) be the number of photons that are successfully detected.
By Proposition 3.22,

Nyet(t) ~ Poisson(pAt), (detected photons)
Nmiss(t) ~ Poisson((1 — p)At), (missed photons).

Example 3.14. We begin with m coupon types labeled 1,2, ..., m. We draw from the bag
of coupons with replacement. In each draw, the probability of getting coupon j is p; where

2{:1% =L
j=1

We wish to compute the expected time needed to see at least one coupon from each type.
Let N; be the first draw in which we see a coupon of type j. Then, a translation of the
question at hand is to compute E(NN) where

N = max Nj.

1<j<m
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The annoyance is that ;s are not independent. We can bypass this annoyance by using a
technique called Poissonization, which helps us somehow ‘make’ the N;s independent. Here
is how it goes.

Consider a Poisson process of total rate 1, where each arrival independently carries label
J with probability p;. Equivalently, by Poisson thinning (Proposition 3.22), there are m
independent Poisson processes

N;(t) ~ Poisson(p;t), 1<j<m,

so that the total process N(t) = > 7", N;(t) has rate 1.
Let T denote the first time coupon j appears,

T; =inf{t > 0: N,(t) > 1}.

Each Tj is exponentially distributed with rate p;, that is 7; ~ Exp(p;). The time to have
collected all coupon types at least once is then

T = max Tj.

1<j<m

For t > 0, the probability that all coupons have appeared by time ¢ is

IP)(T S t) = P(Tl S t, . ,Tm S t) — H(]_ _ e—pjt)’
j=1
and therefore -
]P)(T > t H *pJ
7j=1

Using the tail integral formula for nonnegative random variables, the expected time to
collect all coupons is

E[T] = / P(T > t)dt = / 1— H(l — e Pty | dt.
0 0 j=1
Expanding the product by inclusion—exclusion gives
H (1—ePit) = Z (—1)I5H1 et Ejespi,
=1 o#5C{1,...,m}

Integrating term by term yields the closed form

BT = Y ()

@#£SC{1,...,m} ZjeS Dj
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Next, we relate this continuous-time result to the expected number of discrete draws.
Let N denote the number of independent draws needed in discrete time to collect all coupon
types. In the Poissonized model, the total number of arrivals by time T is

M = N(T),

where N (t) ~ Poisson(?).
Conditional on 7' = t, we have E[M | T' = t] = t, hence

Since the sequence of coupon labels in the Poisson model has the same distribution as in the
discrete model, the number of arrivals needed to see all coupons once is identically distributed
to N. Therefore,

Combining this with the previous expression gives

1
EN]= Y (- ' (3.2)
@£SC{1,....m} Zjespj
Finally, in the uniform case where p; = = for all j, we have S ey = |_:;| and therefore

m

E[N] =m ) (—1)F!

k=1

=mH,,,

T =
| =

(1)

where H,, is the mth harmonic number.

Example 3.15. Suppose we have two independent Poisson processes with respective rates
A1 and Ay, We are interested in the probability that the first process reaches m events
before the second process reaches n events. We will use Poisson thinning (Proposition 3.22
and Corollary 3.12). Let

A
A1+ Ao

be the probability that any given arrival from the combined Poisson process is from process
1. The sum of the two Poisson processes is itself a Poisson process of rate A\; + \y. Each
arrival in this combined process is independently labeled: it is of type 1 with probability p
and of type 2 with probability 1 — p.

The event that the first process attains m events before the second attains n occurs if
and only if, among the first m + n — 1 arrivals of the combined process, at least m are of
type 1. If fewer than m of the first m +n — 1 arrivals were type 1, then the second process
would have reached n arrivals first.

p:
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Hence, if X denotes the number of type 1 arrivals among the first m +n — 1 events, then
X ~ Binomial(m +n — 1,p), and

m+n—1
-1
P{process 1 reaches m before process 2 reaches n} = P(X > m) = Z <m n

k=m

In the special case of equal rates, \; = Ay, we have p = %, and the formula simplifies to

m+4n—1
-1
P{process 1 reaches m before process 2 reaches n} = Z <m * ]:L )2_(m+”_1).

k=m

Example 3.16 (Applying coupon collector). A fast-food chain is running a promotion with a
set of m = 8 collectible toys. Each meal comes with one random toy. To make the promotion
more engaging, the company decides that one of the toys, called the rare toy, will appear
with a lower probability prae = 0.05, while the remaining 7 toys are equally likely to appear
in the remaining probability 0.95. The company can adjust pr.e to balance engagement and
fairness: making the rare toy too rare may frustrate customers, while making it too common
reduces excitement.

Let peommon = 0'—?5 ~ 0.1357 be the probability of each common toy. The goal is to
estimate how many meals a customer must buy to collect all toys at least once.

We model it using the Coupon collector problem. Let X be the total number of meals
needed to collect all 8 toys. Using the general coupon collector formula for non-uniform
probabilities py, ..., ps ((3.2)), the expected number of trials is:

BX]= Y ()

o#£SC{L,...,8} 2 jesPi
Here, p1 = prare = 0.05 and pa, ..., P8 = Peommon =~ 0.1357. The rare toy significantly
increases the expected number of meals needed to complete the set.

Here is a concrete computation for m = 2. The non-empty subsets of {1, 2} are S; = {1},
Se = {2}, and S5 = {1, 2}, giving:

1 1 1
E[X] = + =
prare pcommon prare + pcommon
! N 1 1
0.0 095 1
=20+1.0526 —1
~ 20.05.

So the customer needs approximately 20 toys on average to get the rare toy at least once.
The company now needs to decide whether it is too greedy or not.
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Example 3.17. A company has two independent customer support teams:

e Team 1 handles tickets at rate \; = 5 tickets per hour.

e Team 2 handles tickets at rate Ao = 3 tickets per hour.
Let Ny(t) and No(t) denote the number of tickets handled by Team 1 and Team 2 up to
time t, respectively. Assume these are independent Poisson processes.

Problem: Find the probability that Team 1 handles m = 10 tickets before Team 2
handles n = 7 tickets.

Solution:
Compute the combined rate:

A=M+XN=5+3=8.

The probability that any given arrival belongs to Team 1 is

A1 )
= = — =0.625.
/\1 + /\2 8

p

Consider the combined process N(t) = Ny(t)+ Na(t). Each arrival is independently assigned
to Team 1 (with probability p) or Team 2 (with probability 1 — p). The event “Team 1
reaches 10 tickets before Team 2 reaches 7”7 is equivalent to having at least 10 Team 1 tickets
in the first m +n — 1 = 16 arrivals. Hence, using the binomial distribution:

16
16
P(Team 1 reaches 10 first) = Z (k; >pk(1 —p)to*,
k=10

Numerical computation:

P(Team 1 reaches 10 first) ~ 0.61.

There is approximately a 61% chance that Team 1 reaches 10 tickets before Team 2
reaches 7. This can help management anticipate workload and allocate resources efficiently.

3.4 Conditional distribution of interarrival times

Suppose we condition on N(¢) = 1. This simply means that there is one “event” before time
t. What is the conditional distribution of this time? The interval coloring coin flip will lead
us to guess that this is uniform in (0,¢). This is the content of the next proposition.

Proposition 3.18. P(T1 < s|N(t) =1) = 3.
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Proof.

]P)(Tl <s N(t

)=1)
P(N(t) =1)

[0

(

P(T, < s|N(t) = 1) =

,5),0 events in [s,t))

(1) =1)

P( 1 event in

P
€_>\8)\S€_>\(t s)

Ate— M

S

]

Now what if we condition on N(¢) = n? It can be shown that they behave like “order
statistics” of i.i.d. Uniform random variables. Suppose Xi, Xy, ..., are i.i.d. Uniform[0, ¢].
Let X(;) be the minimum of them, X(,) be the second minimum and so on. This defines
what is called the order statistics:

X(l) < X(g) < ... < X(n).
What is the joint density of order statistics? The density of order statistics is given by

nlf (@) f(@2) ... f(an).

where f is the density of X;. Roughly, for any z; < 2o < ... < x,,

“]P)(X(l) = .CUl,X(Q) = T2,... 7X(n) = xn)” =
> P(Xn) = a1, Xy = 20)” = nlf (1) f(22) .. f ).

™

where 7 : {1,...,n} — {1,...,n} is a permutation. The quotation marks need justification,
but we skip it here.
Using the above idea, here is a proposition.

Proposition 3.19. The joint distribution of (T, Ty + Ts,..., Ty + ...+ T,) conditional on
N(t) = n is given by order statistics of i.i.d. uniform [0,t] random variable. In other words,
we have the joint density:

|
flt, ... tn) = ?—n if0<t; <...<t,<t, and 0 otherwise.

3.5 Non-homogeneous Poisson processes

The only difference between a non-homogeneous Poisson process and a homogeneous Poisson
process is that the rate A is now a function of ¢. So we have a function A(t) : Ry — Ry,
which is usually called the rate function.
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Definition 3.20. A function (N(t))i>o is a non-homoegeneous Poisson process with
rate function or intensity function or simply intensity A(t) if the following holds:

(i) N(0) =0

(1) {N(t) : t > 0} has independent increments, meaning that the number of events that oc-
cur in disjoint intervals of times are independent. More precisely, if [s1,t1], [s2, 2], - - -, [Sn, tn)
are disjoint intervals then (N(t1) — N(s1)),..., N(t,) — N(s,) are independent.

(111) For allt >0,
P(N(t+h)—N(t) =1) = Xt)h + o(h).

Here o(h) is a function f(h) so that
lim —f(h>

h—0 h =0

For example, f(h) = h* is o(h), but f(h) = h or f(h) =log(h) is not.

(iv) P(N(t + h) — N(t) > 2) = o(h). This tells two events occurring in a small interval is
much smaller than the length of the interval.

Recall that the number of events occurring in a homogeneous Poisson process in an
interval (s,t) was a Poisson random variable with mean A\(t — s) = |, " Mdy. Here, it will be
the integral of a function A(t) via almost the same calculations as before. We define

to be the mean value function. We summarize the properties again here. You can try to
prove them yourselves or consult the book, but really the calculations are almost exactly the
same.

Suppose N (t) is a non-homogeneous Poisson process with rate function ().

e {N(s+1t) — N(s) : t > 0} is another non-homogeneous Poisson process with rate
{AMs+t):t>0}.

e N(t) ~ Poisson (f(;5 AMu)du) = Poisson (m(t)). Similarly for 0 < s <t, N(t) — N(s) ~
Poisson ( f;)\(u)du). Note that this process does NOT have stationary increments
(unless of course A(t) is the constant function and we are back to the homogeneous
case).

e Note
P(Ty > t) = P(N(t) = 0) = e ™

e Here the time gaps between events will be independent but may NOT have the same
distribution.
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Example 3.21. Suppose that the number of arrivals of students into the university of
Victoria is given by the following funcion

t2 per hour for ¢t between 7 am to 10 am
A(t) = { t per hour for ¢ between 10 am and 2 pm

0 for other times.

What is the probability that total number of students arriving between 8 am and 11 am is
1007 What is the covariance between the number of students arriving between 8 am and 10
am and 9 am and 11 am?

Solution. The number of students is Poisson with mean given by

11 10 11 103 _ 83 112 _ 102
/ AMu)du = / w?du + / udu = + =A
8 8 10 3 2

So, the required probability is
4 AlOO

100!

By independent increments, the covariance is simply the variance of the number of arrivals
in the interval (10,11). The number of students arriving in that interval is Poisson with

mean 0 s o3
103 —

/ iy = V=Y
9 3

Thus the variance of the number of students arriving in the interval (9, 10) is also w.
We now present a proposition without proof related to Poisson thinning but in the inhomo-
geneous setup.

Suppose N(t) is a Poisson process with rate \. Now suppose for each “event” which
occurs at time s, we color it red with prob p(s) and blue with prob 1 — p(s) independently
for some function p : [0,00) — [0,1]. Let Ny(t) be the number of red events and N(t) be
the number of blue events up until time ¢. Clearly Ny(t) + No(t) = N ().

Proposition 3.22. We have (Ny(t) and Ny(t) are independent inhomogenous Poisson pro-
cesses with rate functions (Ap(s))sso and (A(1 — p(s)))s>o-

Example 3.23. Read the infinite server Poisson queue, Example 5.25 from Ross. (Editions
10 and 11)

4 Continuous time Markov chain

Suppose (X, )nen be a discrete time Markov chain and for each state i assign a parameter
v; > 0 and assume P; = 0 for all ¢ € S. A continuous time Markov chain is a process
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(X (t))i>0 obtained from the discrete time chain (X, ),en by waiting independent Exponential
(v;) amount of time to jump if the chain is at state i. Note that by memoryless property of
Exponential,

P(Xirs = JIX(s) = i, (X(u))ocucs) = P(Xy = j|X(0) = 4) (4.1)

Indeed, if we know the history of the process up to time s and the chain is at state ¢ and
suppose the jump to 7 occured at time s’ < s, then the exponential random variable used to
wait at state 7 in the last step is conditioned to be larger than s — s’. But by memoryless
property of exponential random variables, the conditional distribution of this waiting time
has the same distribution as s — s'+Exponential(r;). Thus starting to count time at s — ¢/,
and since the probability of jumping between states is given by a discrete time Markov chain
to begin with, we arrive at the right hand side.

4.1 Birth and death process

Now we study a very important continuous time Markov chain which is called the birth
and death process or birth and death chain. Here the process is defined in continous
time, and the embedded discrete time chain can be derived from it. Suppose we are studying
the population size of a species. If there are n individuals (for some n > 0), new individual
arrives after exponential ()\,) amount of time, for some A, > 0. On the other hand, if there
are n > 1 many individuals, one of the organisms die after Exponential (u, ) amount of time,
independent of everything else. We can now conclude the following.

e The waiting time when there are n individuals is Exponential with parameter v, :=
An + pn, with pg = 0. This follows from property e. in Section 3.1.

e For the embedded discrete time chain, the total number of individuals can change by
+1 with transition probabilities:
Ai
=1- P
Ai + 7

Piiy1 =

This follows from property f. in Section 3.1.

We now look at several special cases.

Poisson process. If we take A\, = A for all n and p, = 0 for all n, then we get back a
Poisson process with rate .

Yule process. Suppose each organism is immortal and they come with a Poisson clock
with rate A, which when rings gives birth to a new individual, independently of each other.
In this case, when there are n individuals, the amount of time we need to wait is Exponential
with parameter n\, by applying property f. in Section 3.1. Since nobody dies, this is a birth
and death process with \, = n\ and p,, = 0 for all n. This is called the Yule process. We
will study a more general process below, which will yield the Yule process as a special case.
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Population model with immigration Suppose each individual has two independent
Poisson clocks, one birth clock with rate A > 0 and another death clock with rate p > 0.
Also, immigration occurs according to an independent Poisson process with constant rate 6.
Using item e. of Section 3.1, we can frame this as a birth and death process with

A =nA+0 for n>0; pn = nu for  n>1.

Let X(t) denote the population size at time t. We will compute

Suppose we condition on X (¢) = k. Then in the next jump time, the population size changes
to k 4 1 if one of the birth clocks of the k individuals or the immigration clock rings, and
none of the death clocks ring. We observe that if X ~Exponential (a) then for small values

of h >0,
P(X <h)=1—e=ah+o(h), and hence P(X > h) =1 — ah + o(h).

Also if we have m clocks with rates ay, as, ..., a,, then the probability that at least two rings
occur in a small interval of time is

Here (N (t))i>0 is a Poisson process with rate a; + ...+ a;. The last two observations are
essentially reverse engineering to get back item (iii),(iv) in the definition of a Poisson process
with rate a. Using this we compute

P(X(t+h)—X(t)=1|X(t) =k)
= P(one of the birth or immigration clocks ring and no death clock rings)
+ P(at least 2 rings).

Using the two observations above, we see that

P(X(t+h)—X(t) =1| k) = (kA4 0)h(1 — kuh) + o(h) = (kA + 0)h + o(h)
P(X(t+h)— X(t) = —1|X(t) = k) = pkh + o(h)
P(X(t+h)—X(t)=0/X(t)=k)=1—(kA+ 0+ ku)h+ o(h)

where the second equation above has similar reasoning as the first one. Thus we get the
following equation for M (¢t + h) — M (t):

E(X(t+h) — X()|X(t) = k) = (kA + 6 — ku)h + o(h)

which yields
E(X(t+h)|X(t) =X(t)+(AN—pu)X(t)h+ 60h+ o(h)
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Taking expectation again,
M(t+h)—M(t)=(\N—pu)M(t)h+ 6h+ o(h)
Dividing by h and letting h — 0, we get
M(t)y=N—pu)M(t)+46

with initial value M (0) = i.
Let A # p. Then Solving this ODE (substitute f(t) = (A — u)M(t) + 6), we get that

7

M) = 5—

(G(A—u)t —1)+ jeA—mt

Thus as t — oo M(t) — oo if A > p and M(t) — % if g > 6 (there is an equilibrium
population). If = A, then the ODE is M'(t) = 6 which yields

M(t) = 0t + 1.

4.2 Transition probabilities

How to compute transition probabilities in this setup. Transition probabilities are the quan-
tities

P;(t) :=P(X(t) = j | X(0) =)
for all 4,5 in the state space. We have to turn to Calculus and find out ODEs for these
functions.

Proposition 4.1 (Chapman Kolmogorov). We have for all s,t > 0

zg S+t Z-sz ij
keS

Proof. This follows exactly in the same way as in the discrete case using the Markov property
of Continuous time Markov chains (4.1). O

We now introduce two notations. Let

This quantity heuristically denotes the ‘rate’ at which, when a chain is in a state ¢ moves to
state j: 1; is the rate at which it moves to some state, and when it does, it moves to j with
probability F;;. The following lemma justifies this:

Lemma 4.2. We have for all i,7 and t > 0,

. Pi(h) o,
lm === = gi; for all i # j
i L= L) _
h—0 h
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Proof. Since we assumed P;; = 0 for the embedded discrete time Markov chain, 1 — P;;(h) is
the probability that either exactly one transition occurs in (0, k), which has probability v;h
or more than one transition occurs, which has probability o(h). Thus

1 — Py(h) = v;h + o(h)

Dividing by h and letting h — 0, we get the first equality. For the second, note that for the
same reason as above,

Fyj(h) = vibiih + o(h) = gih + o(h),
Dividing by h and letting h — 0, we are done. [
Using this, we derive two differential equations for P;(t).

Proposition 4.3. We have the following two ODFEs for all t,i # j.

o Pi(t) = 4z @inbri(t) — viP;(t) (Kolmogorov’s backward equations)

)

o Pi(t) =2 4z Pir(t) — v;Pi(t) (Kolmogorov’s forward equations)

)

Proof. We will prove the backward equations.

Pj;(h+1t) — me )Py (t) — Py (1)
3 PuB B0~ (L Puh)PS

k#i

=" (gah + 0(h) Poy(t) — (vih + o(h)) Py ().
ki

Dividing by h and letting h — 0, we are done.
For the forward equation,

P,(t+h) — szk (t)Prj(h) — Py;(t)

= sz'k )Pij(h) = (1 = Py;(h)) By (t)
[

= (grsh + o(h) Pa(t) — (v;h + o(h)) Py ().
k#j

Dividing by h and letting h — 0, we are done. [

Example 4.4 (Birth and death process). For a birth and death process with rates \; and
1i, we have the following equations

Pi(t) = NiPiy1(t) + Py j(t) — (i + i) Py (1)
Po;(t) = XoPyj(t) — MoPo;(t).
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Example 4.5 (Pure birth process). For a pure birth process, p; = 0 for all i. Thus we get
from Example 4.4

Pi(t) = NiPiy1(t) — NiPy(t)
Foi(t) = Mo Py(t) = oo (1)
But also P;;(t) = 0 if j < i, so the system of ODE becomes triangular in the following sense
Pi(t) = =AiPu(t)
PL(t) = APy (8) = NPy () for j > i

This can be explicitly solved using ODE techniques.

Limiting probabilities

If the ODE becomes hard to solve, we turn to long run proportions. Let us assume

tlim P,;(t) exists and is independent of i. Let us denote this limit by P;.
—00

We note (and won’t prove) that a sufficient condition for the above limit to exist is that the
underlying Markov chain is irreducible and positive recurrent.

Note the similarities with the discrete time Markov chain result about long run proportion
spent at j converging to stationary distributions. Note this also means that

lim Pj;(t) = 0.

t—o0
Taking ¢ — oo in the backward equation, we get
0= ZijPk —viP = ZC]ijk = v; P
ki ki

The left hand side above can be interpreted as the rate at which the chain leaves j and the
left hand side is the rate in which it enters j. At equilibrium, these two should be equal,
which is exactly what the equation states.

Exercise 4.6. Read example 6.15 from Ross (11th edition)

5 Brownian motion

Brownian motion, in one dimension, can be simply thought of as a simple random walk,
viewed from far away (or in other words, rescaled). Consider a simple random walk (.S,,)n>0
on 7Z and recall that we can write
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where X1, X, ... are i.i.d. so that

However, instead of moving +1 or —1, let us consider moving +& or —e (think of taking e
small, later we will let ¢ — 0). Also, instead of thinking of doing the simple random walk
step in each unit interval of time, suppose we make the step after each A unit of time (we
will also let A — 0 later). In effect, we are shrinking the whole picture and at the same time
speeding up the process. Questions to address:

e What happens if we let A — 0 and ¢ — 07
e Does it matter if we let A — 0 and € — 0 at the same rate?
e If yes, what are the correct rates?

Call this modified rescaled and sped up process X, o. We will not answer all these questions
in rigorous forms as that involves looking at the path in the correct space (which is C|0, 1],
the space of all continuous functions in [0, 1]). Rather we will do some back of the envelope
calculations to guess correctly. Let ¢t = An for some positive integer n. That is n is the
number of steps of the walk in time ¢ (once we have sped up the process).

E(X(6) =0,  Var(X(t)) = Var(e(X1 + ... + X,.)) = £%n Var(X3) = 82%.
since Var(X;) = 1 here. This suggests that if in the limit, we want the variance to be finite,
we must take A = 2. Anything much smaller (i.e. faster), will make the whole process
happen instantly in the limit. Anything much bigger (i.e. slower), and we will see nothing
happen for eternity.

Using the central limit theorem, it is natural to conclude that if we

lim X, .2(f) = lim(e(X1 + ... + Xyye2)) = N(0, 1)

where the limit above is in distribution. Also, it is easy to see that if we replace X, X5, ...
by any i.i.d. sequence with E(X;) = 0 and Var(X;) = o2, the result does not change.
In fact, in the proper space, the limit can be actually computed for the whole path,

and the Stochastic process we get is something called a Brownian motion, which we now
define.

Definition 5.1. A stochastic process (X (t))s>o0 18 a Brownian motion with variance o if it
satisfies the following properties:

(i) X(0) =0
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(11) {X(t) : t > 0} has independent increments, that the if [sq,t1],[s2,t2], ..., [Sn,tn] are
disjoint intervals then (X (t1) — X (s1)),..., X (t,) — X(s,) are independent.
(i1i) {X(t) :t > 0} is stationary, meaning that for every s > 0,
(X(s +1) = X(s))i=0
has the same distribution as (X (t))i>o-
(iv) For eacht >0, X(t) ~ N(0,0%t).

If 0 = 1, this process is called a standard Brownian motion. See ? for a history of
Brownian motion.

We will now assume the following which we do not prove:

Theorem 5.2. One can construct a Stochastic process which satisfies the properties above,
so that almost surely, X (t) is a continuous function.

We remark that the above statement is quite complicated as one needs to specify the
joint distribution of uncountably many random variables together, satisfying the above three
properties. This is highly non-trivial (but can be done).

We will now see how this definition allows us to compute the joint distribution of any
set X(t1), X(t2),..., X (t,) of random variables. This is simply because of stationarity and
independent increments, the joint distribution of

(X (t1), X(t2) — X(t1), X(t3) — X(t2),..., X(tn) — X(tn—1)
is the same as independent random variables distributed as X (¢1), X (to — t1), ..., X(t, —
to-1).
Example 5.3. Suppose X (t) is a Brownian motion with mean 0 and Variance o2?. Compute
o Var(X(t)).
o Cov(X(t),X(s)) for s <t.
o E(X(1)|X(s) =5), Var(X(t)|X(s) =5),
Solution. First one is 0%t by definition. For the second one use independent increments,

to conclude that Cov(X(t), X(s)) = Var(X(s)) = o2s. For the third one, use independent
increments again to conclude that

E(X(t)|X(s) =5) =E(X(s)+ X(t) — X(s)|X(s) =5) =5+0=5.
Also
Var(X (t)| X (s) = 5) = Var(X(s) + X(t) — X(5)|X(s) = 5) = Var(X (t) — X(s)) = o*(t — s).
Example 5.4. Show that if s < ¢,
E(X(s)|X(t) = 10)) = 10%, Var(X (s)| X (t) = 10) = ;(t — ).

https://en.wikipedia.org/wiki/Brownian_motion
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Solution. To compute the conditional expectation, we compute the conditional density.
However we note that computing the joint density of X (¢) — X (s) and X(s) is easier: they
are independent normal with mean 0 and variance ¢ — s and s respectively. Thus note that
{X(t) = 10,X(s) = x} is the same as {X(s) = z, X(t) — X(s) = 10 — x}. Thus, we can
write (exercise: argue more rigorously usign properties of multivariate Normal)

Fx(\x(0)(zl10) = fX(S)(f)fX(t)—X(s)(l() — l‘)
()X () (=(10) fX(t)<1O>

One way to simplify computations is to not care about the constants which do not depend
upon x as we know this is a density hence we can always recover the constants by integrating
over z and equating to 1. Using this idea, we write

Ix(s) (*T>fX(t)—X(s)(10 — )
[x(10)

Comparing this with the density of a Normal random variable, we find that

(v —10*) o? _ (z—10s/t)?
2(t — s) 2s

= Crexp(—

E(X(s)|X(t) = 10)) = 10? and Var(X (s)| X (t) = 10) = §<t — ).

The above example shows that conditioning on the future makes the mean of the Brow-
nian motion to be a straight line joining 0 and the point where the Brownian motion will be
in the future because of the conditioning.

Example 5.5. See example 10.1 in book.

What happens if we rescale multiply a Brownian motion X (¢) with variance o by a
constant ¢? All the properties are preserved, except the last one, namely,

cX(t) ~ N(0,c*o’t)
But this is the same as the distribution of X (c?*t). Thus we reach the important conclusion

Proposition 5.6.
1
(ZX(C2t))tzo = (X(#))i=0
in distribution.
In particular for ¢ = —1, we see X(t) is equal in distribution to —X(t), which means

Brownian motion is symmetric.

5.1 Higher dimensions

In higher dimensions, say in dimension d, Brownian motion is simply defined as a vector
consisting of d independent Brownian motions.

(X (1))iz0 = (X1(t), Xa(t), ..., Xa(t))iz0
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where

Xi(t), Xa(t),. ..
are i.i.d. Brownian motions (the usual one dimensional ones). Covariances are computed
very similarly and we have the following similar scaling

(X (2))m0 = (X1(2t), Xa(c®t), ..., Xa(®))im0 2 c((X1(£), Xa(t), - .., Xa(t))im0) = cX (£).

5.2 Gamblers ruin and hitting times

As usual let X (t) be a Brownian motion. Let T}, be the first hitting time of ¢ > 0 and
suppose b > 0 and T"_; be the first time the Brownian motion hits —b. We will show

Proposition 5.7. P(T, < T;) = aLer That is, the probability that a Brownian motion hits
a before b is given by the above formula. In particular, if —a = b, the Brownian motion has
an equal chance to hit a or —a before the other.

Proof. We will again use a “ hand wavy argument” using the fact that Brownian motion
can be thought of as a limit of a simple random walk. For a simple random walk, when the
steps are of size € or —e¢ with equal probability, suppose the probability that starting from
0 it hits ¢ = ex before j = —ey is given by p,,. Then
1 1
Pzy = Epm—l,y + §px,y—1 for 0 <z < a, —b < ) <0.

Solving this with boundary conditions py, = 1 for all  # 0 and p,o = 0 for all z # 0, we
see that the probability is exactly

eb b

:5(a+b) a+b

DPab

Thus since the expression does not depend on ¢, letting € — 0, we get the same formula.
m

Corollary 5.8. Fiz k € R. P(T, < o0) = 1, or in other words, Brownian motion hits 1 at
some point of time.

Proof. P(Ty, < T_,) = 3 — 1 asn — oo (since k is fixed). But the events {7} <
T .} are getting larger as n grows and eventually reaches {T} < co}. Hence so does their
probabilities. L

Ok, so we now Brownian motion hits 1 with probability 1. After hitting 1, Brownian
motion is the same as 1+ X (¢) where X (¢) is another Brownian motion. So the Brownian
motion will hit —1 with probability 1 at some point. Iterating this argument, we see that
a Brownian motion will hit 1 and —1 infinitely often. By continuity (intermediate value
theorem), Brownian motion will hit 0 in between hitting 1 and -1. Thus we have established
a form of recurrence of Brownian motion:
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Theorem 5.9. With probability 1, a Brownian motion X (t) hits O infinitely often.

We will now see that this actually gives us the following (remarkable at first) property
of Brownian motion: for for any € > 0, X (¢)p<:<. infinitely often with probability 1. To see
this we first make a claim:

Proposition 5.10.
Y (t) = (tX(1/t)) fort >0 and Y(0) =0

1s another Brownian motion.

Proof. We will not prove this completely, rather wave our hands a bit. Recall that for a
multivariate normal distribution, to know the distribution, one only needs to specify the
mean vector and the covariance matrix. This is also the case if we have a “vector” consisting
of uncountably many random variables, which is the case here, X () is Normal for each ¢ > 0.
Note that E(tX(1/t)) = 0 and for s < t,

Cov(sX(1/s),tX(1/t)) = st Cov(X(1/s), X(1/t)) = st% =s = Cov(X(s), X(t)).

Showing that tX (1/t) — 0 as ¢ — 0 can also be done, but we skip that here. O

But note that Y (¢t) = ¢t X (1/t) hits 0 infinitely often as ¢ — co. However, this means that
X(1/t) hits 0 infinitely often as 1/t goes to 0 (since we are reversing time in some sense).
This shows that X (t)p<t<. must hit 0 infintely often with probability 1.

5.3 Reflection principle and law of the maximum

Let X (t) be a Brownian motion and suppose that M(t) = sup{X(s) : 0 < s < t} =
max{X(s) : 0 < s <t} (since Brownian motion is a continuous function on a compact set,
its supremum is its maximum). We will show the following nice proposition

Proposition 5.11. For all a > 0,
P(M(t) > a) =2P(X(t) > a) =P(|X(¢)| > a).
Proof. The second equality is obvious
P(|X(t)] > a) =P(X(t) >a) + P(P(X(t) < —a)) =2P(X(t) > a).

which follows from the symmetry of Brownian motion since X (t) and —X (¢) have the same
distribution.

For the first part, we will “hand wave” a little and assume the following. Let T' = inf{t >
0:X(t) = a}. We will use a consequence of something called the strong Markov property of
Brownian motion:

(X(T+t) — X(T))t>0 has the same distribution as (X (¢)):>o.
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Note that T' is a random variable so this is not a consequence of stationarity, but is still true
10 But if this is the case, we can use the symmetry of the Brownian motion, to reflect it at
T. This is still a Brownian motion. This gives us the process

X*(t) = X () lperer + (2X(T) — X (£)) 1.

which has the same distribution as (X (t)):>o.
Using this, we can say the following

P(M(t) > a) = P(X(t) > a)+P(M () > a, X(t) < a) = P(X(t) > a)+P(X*(t) > a) = 2P(X(t) > a)

since if X (¢) is lower than a, the process reflected at 7" must be bigger than a. Thus since
X*(t) has the same distribution as X (t), we have the final equality.

Example 5.12. Let M (t) = max{X(s) : 0 < s <t} for a Brownian motion X. Show that
E(|M(t)]) < co.

Solution We have using the

& ]_ z2 ee 1 azx 2t 2 1 \/ﬁ 2
IP’Mt>a:2PBt>a:2/ e2t§2/ e 2t =2—e ¢ =2 e ?
(M1) > 0) = 2(B(0) > ) =2 [ —— e e e m
Now recall,
BIMO) = [ BIMO)] > a)da
0

But

/ 2P(M(t) > a)da = 4\/_e’a2da<oo

1 1 GL\/7_T
and

2

/011@(|M(t)| > a)da < /01 \/1_6_35tdx

27t

which is clearly finite.

5.4 Gaussian processes

We studied multivariate Normal distribution in Math 352/ Stat 350. Here is a quick recap:

10in particular, this is true for any stopping time, if you are interested you can look it up.
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5.4.1 Multivariate Normal

The joint pdf of a multivariate Normal distribution as follows.

Definition 5.13. We say (Xi,...,X,) follows multivariate Normal with mean vector p =
(1, .., pn)t and Covariance matriz ¥ is

1 Tewe—1 n
Ix1x,(T) = OSSN exp((z —p)' X (x—p), zeR

The above expression is quite complicated. There is a natural interpretation of the
parameters as in the one variable case: p; = E(X;). The variance of the one variable case is
replace by ¥ which is an n x n matrix and the (7, j)th entry of ¥ is Cov(X;, X;).

We will learn a different way to define multivariate normal through Moment generating
functions, which avoid all the nasty multivariate integrals in the above definition.

Alternate equivalent definition of multivariate Normal:

Consider the matrix

a1; a2 @13 ... Qin

Q21 Q22 dA23 ... (A2pn
A= | . . .

an1 Ap2 Ap3z ... Ann

and
o= (s )’

Definition 5.14 (Alternate definition equivalent to Definition 5.13). Let Zy, ..., Z, be i.i.d.
Normal (0,1). Let Z = (Zu, ..., Z,). A multivariate Normal with mean p and covariance
matriz AAT is the joint distribution of the vector

X =AZ+p.

We write
X ~ N(u, AAT).

Important facts:

1. If we know the mean vector g and the covariance matrix >, then we know the joint
density of multivariate Normal.

2. The sub-vector obtained by removing some of the entries of a multivariate Normal is
again a multivariate Normal distribution.
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3. If X is a multivariate Normal distribution with n entries and A is a m X n matrix
then AX is another multivariate Normal distribution with m entries. That is linear
combinations of multivariate Normal is another multivariate Normal. Exercise: If X
has Covariance matrix ¥, find the covariance matrix of AX.

4. In a multivariate Normal, if we condition on the values of some of the coordinates, the
law of the remaining is still a multivariate Normal.

Now back to Gaussian processes.

Definition 5.15. A stochastic process (X (t))i>0 is a Gaussian process if for all t; < to <
<t
(X (t1), X(t2),...,X(tn))

1s a multivariate Normal.

Note that we did not specify the mean vector and the covariance matrix which opens up
a wide range of possibilities for Gaussian processes. For example,

Proposition 5.16. Brownian motion is a Gaussian process.

Proof. Let (X(t))i>0 be a Brownian motion. We know
(X (t1), X (t2) = X(t1),..., X(tn) — X(tn-1))

are independent Normal distributions and hence is a multivariate Normal. Furthermore,

X(t) 10 0 0 X(t1)
X(ta) _f(r1 0 0 X(ta) — X(t1)
X(:tn) 11 11 X(t,) _:X(tn—l)

which implies using the fact that linear combination of multivariate Normal is a multivariate
normal that
(X(0), X (), -, X ()

is a multivariate Normal. O

In fact since multivariate Normal distributions are completely determined by mean and
covariance matrices, we also have the following

Proposition 5.17. Let (X(t))i>0 and (Y (t))i>0 be Gaussian processes such that
E(X(t)) =E(Y(t)) for allt >0

and
Cov(X(s), X(t)) = Cov(Y(s),Y(t)) for all s,t >0

then (X (t))>0 and (Y (t))i>o have the same distribution (i.e. are the same Gaussian pro-
cesses).
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As a corollary we obtain

Corollary 5.18. Brownian motion is the only Gaussian process (X (t))i>o such that
E(X(t)) =0 and Cov(X(s), X(t)) = min(s,1).

Warning: This is a very special property of Gaussian processes and for any other process
this is certainly not true. For example consider the following Compound Poisson process.
Let N(t) be a Poisson process with rate 1 and let X,..., X, be i.i.d. with E(X;) = 0 and
Var(X;) = 1. Let

Then
E(Y(t)) = 0 (exercise)

and
Cov(Y (s),Y (t)) = min(s,t) (exercise)

This is the same as that of a Brownian motion, however a Poisson process is not Gaussian
(i.e. N(t) ~ Poisson(t)) hence there is no contradiction to Proposition 5.17.

5.5 Brownian bridge

We want to define an object like a Brownian motion, but defined on a finite interval with
both endpoints taking value 0. To that end, we simply define

Definition 5.19. A Brownian bridge in the interval [0, 1] is a stochastic process (Y (t))o<t<1
which defined as a Brownian motion X (t) conditioned on X (1) = 0.

Using item 4 of the properties of multivariate Normal, we see that a Brownian bridge is
a Gaussian process (exercise: prove it in details). Thus all we need to characterize it is to
compute the mean and the covariance. Using example 5.4, we see that

E(Y (1)) = E(X(£)[X(1) = 0) = ; X0 =0
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and for s < t,

Cov(Y(s), Y (t)) = E(Y(s)Y (7))
=E(X(s)X(t)|X(1) =0)
=E(E(X(s)X (¢)[X (1), X(1) = 0))
= E(X(1)E(X(s)[X(¢), X (1) =0))
- E(X(t)%X(tMX(l) — 0) using example 5.4
= E(X(t)>]X (1) = 0)

Now we prove that Brownian bridge can be alternatively represented as follows.

Proposition 5.20. Let (X(t)):>0 be a Brownian motion. Then
Z(t) = X(t) —tX(1), 0<t<1
1s a Brownian bridge.

Proof. Using Proposition 5.17, we only need to check whether the mean and the covariances
are the same as that we computed above. Note

E(Z(t)) = E(X(t)) — tE(X(1)) = 0
and for s < t, it is a straightforward calculation to show that

Cov(Z(s), Z(t)) = s(1 —1) (exercise).

93



6 Solutions

6.1 Section 1
1. (a) Marginal of Y. For 0 <y < 1,

1 1
1
fr(y) =/ 436(1—y)dx=4(1—y)/ vdr =4(1—y)- 5 =2(1 - y).
0 0
Conditional density. For 0 <z < 1,0 <y < 1,
fxy(zy) 4zl —y)
Ixy(z|y) == = =2z, 0<xz<l.
=T ey

Thus X | (Y =y) ~ Beta(2,1).

(b) Conditional expectation.
1 1 9
E[X|Y:y]:/ x-(2x)dx=2/ xzdx:§.
0 0

(¢) Unconditional expectation. By the law of total expectation,

E[X]:E[E[Xwn:/o §fy<y>dy=§/o 21— y)dy =212

(d) Variances First,

1 1
E[X2|Y:y]=/ xz-(Qx)dx:2/ x3d:g=§.
0 0

So )
1 2 1
Var(X|Y:y):§—(—) = —.

By the law of total variance,

Var(X) = E[ Var(X | Y)] + Var(E[X | Y]) = % +0= %

2. (a) Marginal of Y. For y € {1,2,3},

(Checking: y =1+ 5/21, y =2+ 7/21, y = 3 — 9/21, which sum to 1.)
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(b) Conditional pmf. For y € {1,2,3} and = € {1, 2},

PX=2Y=y (x4+y)/21 z+y

P(X=z|Y=y)= P(Y =y)  (3+2y)/21 3+2y

(¢) Conditional expectation. For y € {1,2,3},

L-(I1+y)+2-24+y) 5+3y
3+ 2y 342y

EX|Y =y]= Zx]P’ =z |Y =y =

(d) Unconditional expectation. By the law of total expectation,

3

3

5+ 3y 3+2y 1

E[X]=ZE[X|Y:y]P(Y=y>=Z3+2y = 5y 20+ ).
y=1 =1 y=1

Compute the sum:

3
> (5+3y)=(B+3-1)+(5+3-2)+(5+3-3) =8+ 11+ 14 =33,

y=1

hence

3. For p € (0,1)

P(X=1,P<p) [TP(X =1P=u)du P
]PP< le - ’ == 0 :2 d — 2

Differentiating, we get the conditional density

feix(p|1)=2p.

Since P(X = 1| P=p) =p, fp(p) =1 for 0 < p <1 (uniform prior), and P(X =1) =

é , we obtain

p-1
=2 1.
frxpl D) =T75 =2 0<p<
If p<0then P(P <p|X =1)=0and p>1then P(P <p|X =1) = 1. Thus, overall

2p, 0<p<l
1) =
fPIX(p R {O otherwise.

By same calculations, we get
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2(1 —p), 0<p<l.
0 otherwise.

frx(p|0) = {

The conditional expectations are E(P|X = 1) = fol 2p?dp = % and E(P|X = 0) =
Jo 2p(1 = p)dp = §.
Also

E(P) = E(P|X) = E(P|X = 0)P(X = 0) + E(P|X = 1)P(X = 1) = g% + %% — %
as it should be.

. (1) P(X <Y). Using independence,

o0 o0 o0 )\
PX <Y)= / P(Y > 2) fx(z)dv = / e 2% N\ e M dy = )\ / e~ Aitd2)e g0 : +1A _
0 0 0 1 2

(2) Conditional law of the excess W := Y — X given X < Y. Fix =z > 0.
Condition on the event {X = x}. Under this conditioning,

PW>w|X=z, X<Y)=PY -z>w|Y >uz).
as X is independent of Y. By the memoryless property of the exponential,
PY—-z>w|Y>2)=PY >w)=e¢™,  w>0,

so for each fixed = the conditional distribution of W given X = z and X < Y is
Exp(A2) (and does not depend on ). Hence after integrating over x we obtain

/ PW>w|X =z X<Y)fx(z)ds = / e fy(z)de = e
i.e. W conditioned on X <Y follows Exponential (Ag).

. (1) By definition of G(n, p), each possible edge appears independently with probability
p. In particular,
P((u,v) € E) =p.

(2) Let A denote the event that (u,v) € E. Write

deg(u) = Z Luw,

w#u

where [, is the indicator that u is adjacent to w. There are n — 1 potential neighbours
of u, one of which is v and the remaining n — 2 are the other vertices.
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Compute the joint probability that A occurs and deg(u) = k. This is the event that
the edge (u,v) is present and exactly k — 1 of the other n — 2 possible edges from u
are present. Thus

n—2\ ,_ ) — (e n—2 ne1—
P(A, deg(u):k:) =p- (k—l)pk 1(1—p)( 2)—(k—1) _ (k—l)pk(l_p) 1k

The marginal probability that deg(u) = k (without conditioning on A) is

P(aesn) = 1) = (" )pr - p

since deg(u) ~ Bin(n — 1, p).
Therefore the conditional probability is

L P(Adeg(u) =k) (O -p)rt ()
PATdee() =8) = el =0~ (o p i ()

A simple combinatorial simplification gives

) _ Kk
(") -l
Hence
P((u,v) € E | deg(u) = k) = nﬁl :

(3) Interpretation. Knowledge of the degree deg(u) = k does affect the probability
that u is adjacent to a particular vertex v: conditioned on deg(u) = k, the probability
is k/(n — 1), which in general differs from the unconditional probability p. Intuitively,
conditioning on degree k says “u has exactly k neighbours chosen uniformly at random
from the n — 1 other vertices,” so the chance that v is among those k£ neighbours
is k/(n — 1). Note that taking expectation over k recovers the unconditional edge

probability:
' gftste] _ Epkge) _(n- 1

n—1|_ n-1  n-1 - P

Thus on average the conditional result agrees with p, but for a given observed degree
the conditional probability is k/(n — 1).

. (1) Unconditional probability of S, = k. For a symmetric random walk, S,, = k

if and only if exactly
n+k

2
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of the steps are +1 (and the remaining n — m = (n — k)/2 steps are —1). Hence

P(S, = k) = ( o +”k) /2> 2" k=n (mod2).

(2) Conditional probability of the first step. Write

P(X, =+1,5,=k)

P(Xy=+1|S,=k) = BES, = 1)

If X; = +1, then the remaining n — 1 steps must sum to
Sn,1 = k - 1

Therefore,

2

P(X, =+1,5,=k) =P(X; = +1)P(S,_1 = k—1) = 1( n-l )2—<”—1> = (

Similarly, by part (1),

Thus
P(X) = +1] S, = k) = 2~

A simple combinatorial simplification gives

((n+7}c;/1271) _(n+ k‘)/Q

((n+7ll<:) /2) n

Hence

p
P(X1:+1|Sn:k):n;; |

(3) Interpretation. The probability that the first step is +1 does depend on the final
position S,, = k. Intuitively, if the walk ends up far to the right (k large), the first step
is more likely to have been +1; if the walk ends up far to the left (k negative), the first

step is more likely to have been —1.

Unconditionally, P(X; = +1) = 1/2, but conditioning on S,, = k skews this probability

linearly:
1k
P(X1:+1]Sn:k):§+%.
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7. (1) Probability of reaching +a before —b.

For a symmetric random walk starting at 0, let
UOZP(STZQ|SOZO).

The probability satisfies the standard difference equation for gambler’s ruin:

_ ! + ith u, = 1 =0
Uy = 2U1 2u_1, W1 Ug = 1, U_p = U.
The solution is linear: .
= — —-b<k<a.
Y=Y +0b’ =v=a
In particular,
b
P(S; =a) =uy = .
( @) = to a+b

(2) Conditional probability of the first step.
By the Markov property,
P(X, =+1,5; =a)

P(X; =+1| 5, =a)= Fl5 = o)

The numerator can be computed as:
1
P(X;=+1,5,=a)=P(X; =4+1)P(S;, =a| S; =+1) = 3 -P(S; =a| S =+1).

After the first step, the walk is at S; = +1. The probability that it eventually reaches
+a before —b from +1 is

1+b
P(ST:a|51:+1):u1:a+b.

Hence L 14b -
PX;=+1,S,=a)=-- = .
(=L 5 =a) =5 o = 3T )

Dividing by P(S, = a) = a%b gives

1+
P(X1=+1|ST=a)=2—J;.

(3) Interpretation.

Conditioning on eventually hitting 4a biases the first step toward +1. Indeed, un-
conditionally P(X; = +1) = 1/2, but conditioned on success (hitting +a before —b),
the first step has probability b;—bl > 1/2. The closer b is to 0 (i.e., the closer the lower
barrier), the stronger this bias; the first step is more likely to point toward the barrier
we wish to reach.
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Section 2

1. Communicating classes:

{2}, {3,4}, {0,1}.
Recurrent and transient classes:

e {2} is recurrent (absorbing state).
e {3,4} is recurrent (closed class, cannot leave).

e {0,1} is transient (eventually leads to state 2 and never returns).
2. The walk

e stays at the current vertex with probability p, or

e moves to the other vertex with probability 1 — p.

Let m = (mg, m1) be the stationary distribution. Then 7 = 7P, i.e.,

(7r0,7r1)( P 1_79) — (0, T1).

L=p p
This gives the system of equations:
T = pmo + (1 — p)my, m = (1 —p)mo + pmy.
Simplifying, we find
mw(l—-p)=1—-pm = 7w =m.

With normalization 7y 4+ 7 = 1, we obtain

11
T=\{=,=].
2°2

The lazy simple walk on 2 states is irreducible and aperiodic (since p > 0), so the
Markov chain is positive recurrent. Therefore by Theorem 2.39,

lim P"(z,y) =n(y) forall z,y € {0,1}.

n—o0

3. a. Communicating classes:
{0,1}, {23}, {4}

b. Recurrent and transient classes: All are recurrent.
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c. Stationary distributions for each recurrent class:
- Class {0,1}: Solve

7T0:O.57T0—|—0.57T1, 1 :0.57T0+0.57Tl, 7TO—|—7T1:1.

Solution:
To = 05, ™ = 0.5.

- Class {2,3}: Solve
7T2:0.47T2+0.67T3, 7T3:0.67T2+0.47T3, 7T2—|—7T3:1.

Solution:
T = 05, T3 = 0.5.

- Class {4}: Only state 4, so
Ty = 1.

d. Limiting probabilities starting from state 0:
Since state 0 can only reach the class {0, 1}, only this class contributes. Therefore:

lim P™(0,0) = 0.5, lim P™(0,1) = 0.5,

n—o0 n—o0

lim P"(0,2) = lim P"(0,3) = lim P"(0,4) = 0.

n—oo n—oo n—oo

. a. Communicating classes:

{0,1}, {2,3}.
b. Recurrent and transient classes:
e {2,3} is recurrent
e {0,1} is transient
c. Stationary distribution for recurrent class {2,3}:
Solve

g = 0.47’(’2 + 0.37’(’3, Ty = 0.67T2 + 0.77’(’3, Ty + Ty = 1.

From the first equation: 0.6my = 0.373 =— my = 0.5m3. Using 7 + m3 = 1:

0.5m3+m=1 = 15m3 =1 = 77325777-2:%.

So the stationary distribution of class {2,3} is

7= (my, 73) = (%g)
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d. Limiting probabilities starting from state 0:

Since states 0 and 1 are transient, all probability eventually moves to the recurrent
class {2,3}. Hence:

lim P™(0,0) =0, lim P™0,1) =0,

n—oo n—oo
li P”(02—1 lim P(0,3) = 2
P02 =35 I P08 =3

5. Let m = (mg, m, 72, ...) denote the stationary distribution. Then m = 7P when ex-
panded takes the form

mo = 1o P(0,0) + mP(1,0) =m(l —p) + Mg = ™= Swo.

7, =mi1 Pt —1,4) + mP(i,i) + m P(i + 1,4) = map + mi(1 — p — q) + migaq.
Rewriting gives the recurrence:

1 ptq p p
Tit1 = 5(771 —miap—mi(l—p— Q)) =T = —Ti-1 = T — 577'1‘—1-

Try a solution of the form m; = p'my. Then

p p
T = PTo = —T — p=—.
q q
By induction, this satisfies the recurrence for all 7 > 1:
-(8)
T =\ — 70-
q
Normalizing:
ZW,‘:W()Z(E) = T :WOL:]_ — Wozu.
— —~\q 1—p/q q—p q

we get the final stationary distribution

m_(fz) =P S0 0<p<a
q q
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6. The one-step transition probabilities are
1l—a)1=7r), j=i+1,
Pli,j) = a+(l—a), j=0, i>0.
0, otherwise.
(For i = 0 the same formulas apply; in particular P(0,0) = o+ (1 — a)r and P(0,1) =

(1—a)(1—1).)

Guess for the reversed chain. By the same intuition as the basic aging example:
in reverse time the chain deterministically decreases age by 1 until it hits 0; from 0 it
jumps to the age the previous bulb had at removal. Hence we guess

for some probability mass function p on Ny to be determined (the law of the age-at-
removal under stationarity).

Stationary distribution via detailed balance. Detailed balance for the nearest-
neighbour upward steps gives, for i > 0,

7()) P(i,i+1) = 7(i + 1) Q(i + 1,4).
Using the guess Q(i + 1,7) =1 and P(i,i +1) = (1 —a)(1 — ) we get
m(i+1)=(1—a)(l—r)m().

Iterating yields a geometric form

Normalizing:
1= 07) =7(0) Y (1= a)(1 =) =7(0)- 7 _1@(1 -
Therefore
m0)=1-(1-a)l-r)=a+(1-a)r
and hence

7)) = (a+ (1 —a)) (1—a)(1=7), i>0.
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Determine ;1 and the reversed transition matrix. Use detailed balance relating
forward resets to reverse jumps from 0: for each 7 > 0,

m(7) P(j,0) = 7(0) Q(0, j).
But P(7,0) = a+ (1 —a)r = 7(0) (see above), so
m(j)7(0) =7(0)Q0,5) = Q0,5) =(j).

Thus the reversed jump distribution from 0 equals the stationary law itself. Concretely,

Q0,j) = (a+(1-a)) (1-a)1-r)’, j>o0.

Collecting the nonzero reversed probabilities:

Ql,i—=1)=1 (i=1), Q@0,j)==() (=0).

Verification of detailed balance. We check the two types of edges:

e Fori,i+ 1:
()P, i+ 1) =7() (1 —a)l—=r)=n(i+1)-1=7(i+1)Q(: + 1,1).
e For 5, 0:
7(5)P(j,0) = 7(j) (o + (1 — a)r) = 7(0)7(j) = m(0)Q(0, 7).
Thus detailed balance holds and the computations are consistent.

. Every state can reach every other: for instance, from any i € {0,1,2} one reaches
3 with positive probability, and from 3 one reaches 0 with probability » > 0. The
self-loop P(3,3) = 1 —r > 0 makes the chain aperiodic.

(2) Kolmogorov cycle test. Consider the directed cycle
0—=1—-2-=3—=0.
Compute the product of forward probabilities:
forward: P(0,1) P(1,2) P(2,3) P(3,0) = (1 - po)(1 — p1)(1)(r) = (1 — po)(1 — ).
The reverse cycleis0 -3 -2 —1—0, so
reverse: P(0,3) P(3,2) P(2,1) P(1,0).
But from the transition matrix:
P(0,3) =py, P(3,2)=0, P(2,1)=0, P(1,0)=0,
so the entire product is 0.

Because the reverse product is zero while the forward product is positive, Kolmogorov’s
cycle condition fails, and the chain is not reversible. There are transitions that never
occur in the reverse process which occurs in the forward process, so the process cannot
be reversible.
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Table 2.1

Discrete Probability Moment
probability mass generating
distribution function, p(x) function, ¢(#) Mean Variance
Binomial with {:]pxlil — panE (pe' + (1 —pn" np npi(l — p)
parameters m, pr, x=0,1,...,n
0=p=1
. AX
Paisson with c"*F, exp{ile’ — 1)} A A
parameter ’
L0 IZU,].._,E.,...
e 1 1-—
Czeometric with p(l —pyre—1, p - - it
parameter x=1,2,... 1 —(1—-ple P i
0=p=1
Table 2.2
Continuous Moment
probability Probability density generating
distribution function, f{x) function, ¢(¢) Mean Variance
1
— gl — pld b b — a)
Uniform fix) = 5_{,;"'5{3{'[’ e p— 'fHE' [ uﬂ}
over (a, b) 0, otherwise to —a)
4 e x =0 A 1
Exponencal with  fix) = | * — —
parameter i = 0 0, x=0 A—E A At
he Myt s A
Gamma with flx) = { m—1y xz0 ( . ) 1 z
: A—t A Al
parameters 0, x <0
(7,20, A =0
MNormal with (x) = exp § it + i i
parameters L Z
(i, 077) x exp{—(x — p)?/ 207},
—00 = X = 00
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