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Uniform Homomorphisms

Let Λ be a finite subgraph of Z2. Consider h : V (Λ)→ Z such that, for
any neighboring vertices u and v , |hu − hv | = 1.
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We will take Λn to be an (even) square of side length 2n, with h ≡ 0 on
the boundary; uniformly pick one such function h and call this measure
φ0

Λn
.

How does Var(h0) behave as n→∞?
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Random Surfaces

In one dimension, this model is simply a simple random walk which is
classical, with variance of order n.

In Z2, the uniform homomorphism model is conjectured to be one of
the (many) random-surface models that can have one of two
behaviors:

φ0
Λn

[h0 > r ] < e−kr , for some k > 0 (localized) , or

k log n ≤ φ0
Λn

[h2
0] ≤ K log n for some k ,K > 0. (delocalized)
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Scaling limit
In the delocalized phase, the model is supposed to behave like a
Gaussian free field in the scaling limit which is conformally invariant.

Figure: Left: Due to Scott Sheffield, Right: Due to Ron Peled
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Main theorem

Theorem (DCHLRR, 19)
For the uniform homomorphism model, ∃c,C > 0 so that for all n ≥ 1,

c log n ≤ VarΛ0
n
(h0) ≤ C log n.
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Dichotomy Theorem

Our strategy is to prove the following Dichotomy theorem:

Theorem (DCHLRR, 18)

For the uniform homomorphism, either:

φ0
Λn

[h0 > r ] < e−krα , for some k , α > 0, or

∃c,C > 0 so that for all n ≥ 1,

c log n ≤ Var(h0) ≤ C log n.
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Perspectives

History and perspectives
One can view this model from different (not necessarily disjoint)
perspectives and flavours.

A a model of random graph homomorphism between two graphs
and vary the graphs (gets into computer science questions like
graph colorings).

As a model of random height function/ random surface (analogous
to dimers, tilings, SOS, integrable models).
Percolation model (level lines / level sets).
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History: random graph homomorphism

If G is a tree: tree indexed random walk (Benjamini, Peres , 94).
Introduced by Benjamini, Häggström and Mossel in 2000 studied
some properties on general graphs (e.g. tree with leaves wired).
I. Benjamini and G. Schechtman (maximal height difference)
Benjamini, Yadin, Yehudayoff : (n × n torus, range ≥ c

√
log n).

Ron Peled. In high dimensions , the height function is localized.
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Random surface model: continuous heights

One can consider continuous height functions ϕ ∈ RZ2
with

P(ϕ) ∝ exp(
∑
u∼v

U(φu − φv ))δ0(dϕ∂Λ)
∏

v∈V\0

dϕv

We expect this to be delocalized usually

U(x) = x2 is the Gaussian free field.
U twice continuously differentiable (and some further
assumptions) on R: Brescamp, Lieb and Lebowitz (’76), and
generalized later by Ioffe, Sholshman and Velenik (’02)
Uniformly convex U: Naddaf and Spencer, Miller (scaling limit to
GFF), Funaki and Spohn (Gibbs measures for ‘tilts’). Techniques
include: Brescamp-Lieb inequality, Helffer-Sjostrand
representation, homogenization.
Hammock potential: Peled and Milos (Mermin–Wagner type
arguments).

G. Ray (UVic) Dichotomy for Square Ice November 13, 2019 9 / 30



Random surface model: continuous heights

One can consider continuous height functions ϕ ∈ RZ2
with

P(ϕ) ∝ exp(
∑
u∼v

U(φu − φv ))δ0(dϕ∂Λ)
∏

v∈V\0

dϕv

We expect this to be delocalized usually

U(x) = x2 is the Gaussian free field.
U twice continuously differentiable (and some further
assumptions) on R: Brescamp, Lieb and Lebowitz (’76), and
generalized later by Ioffe, Sholshman and Velenik (’02)
Uniformly convex U: Naddaf and Spencer, Miller (scaling limit to
GFF), Funaki and Spohn (Gibbs measures for ‘tilts’). Techniques
include: Brescamp-Lieb inequality, Helffer-Sjostrand
representation, homogenization.
Hammock potential: Peled and Milos (Mermin–Wagner type
arguments).

G. Ray (UVic) Dichotomy for Square Ice November 13, 2019 9 / 30



Random surface model: discrete heights

One can consider discrete height functions ϕ ∈ ZZ2
with

P(ϕ) ∝ exp(
∑
u∼v

U(φu − φv ))δ0(dϕ∂Λ)
∏

v∈V\0

dϕv

Frohlich and Spencer: U(x) = −β|x | or U(x) = −βx2 .
Delocalization for small β and localization for large β (using a
mapping to Coulomb gas). This is called Roughening transition.
Glazman and Manolescu (2019): Delocalization for uniform
Lipschitz on triangular lattice (a connection with loop O(2) model
is exploited).
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Six vertex / Square ice model
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Figure: Put weight c > 0 on the last two configurations.

Our model: c = 1. We prove logarithmic variance.

For c > 2 on Zn × Zn height function is localized. Recently shown
by Duminil-Copin, Harel, Gagnebin, Manolescu, Tassion, ’17
(using Bethe Ansatz).
See Spinka and R’ (19) for a short proof for c > 2 case.
Conjecture: If c ∈ (0,2] : height function→ k(c)Gaussian free
field. This is wide open except the free fermion point c =

√
2

(dimer model).
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General strategy

Our approach is to adopt renormalization technique for random cluster
model developed by Duminil-Copin, Sidorovicius and Tassion to prove
the dichotomy theorem.
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Percolation Picture

We will consider the percolation processes induced by h ∈ S.

There are two distinct types of connectivity we will need to think about:
the usual connectivity of Z2, and

×-connectivity, which connects vertices of the same sublattice
which are diagonal to one another.
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Dichotomy Theorem

We will state our dichotomy theorem for uniform homomorphism model
in terms of horizontal ×-crossing of rectangles of aspect ratio ρ, which
we denote H×(Λρn,n):

Theorem (DCHLRR, 19+)

For the uniform homomorphism, either:

φ0
Λn

[h0 > r ] < e−krα , for some k , α > 0, or

there exists c(k , r , ρ) such that, for any r , k > (2 + ρ), and n
large enough,

c < φ0
Λkn

[H×h=r (Λρn,n)] < 1− c.
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Dichotomy Theorem

There are two distinct elements required for the dichotomy argument:

A relation between horizontal and vertical crossings,

φ0
Sn

[H×h≥2(Λρn,n)] ≥ c
(
φ0
Sn

[V×h≥2(Λρn,n)]
)ρ/c

,

where Sn is the infinite strip of height 2n.

A renormalization argument, which will use the generalized RSW
estimate above to prove that

φ0
Λ20n

[∃ × -circuit of h ≥ 2 in Λ20n \ Λ10n]

≤ C · φ0
Λ2n

[∃ × -circuit of h ≥ 2 in Λ2n \ Λn]2 .
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Tools for the proof

The uniform homomorphism has a few good properties:

h satisfies the FKG inequality — that is,

φ0
R[A ∩ B] ≥ φ0

R[A] · φ0
R[B], for any A and B increasing in h.

h has the ×-Domain Markov Property.

Under ‘good’ boundary conditions, there are several equivalent
ways to express crossing events:
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The ‘free lunch’ equalities

The planar duality of the crossings implies that

H×h<m(R)c = Vh≥m(R)

= Vh∈{m,m+1}(R) = V∗h=m+1(R)

=
h ≥ m pathh < m ×−path

C

where ∗-paths connect vertices at `1-distance 2.
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The ‘free lunch’ equalities

Suppose the boundary conditions on the horizontal sides of R are
below m. Then

H×h<m(R)c = Vh≥m(R) = Vh∈{m,m+1}(R)

= V∗h=m+1(R)

h ≥ m path
κ ≤ m

=
κ ≤ m h ∈ {m,m+ 1} path

=

where ∗-paths connect vertices at `1-distance 2.
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κ ≤ m
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where ∗-paths connect vertices at `1-distance 2.
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The less-than-advantageous properties

There are also some major difficulties in the analysis:

The crossing events H× and V× are not self-dual.

The spin space of h is unbounded in both directions.

This makes it tricky to ‘push’ boundary conditions to manipulate the
geometry of domains, as there are no optimal boundary conditions for
increasing events.
To get around this difficulty, we will work with the absolute value of h —
which, it turns out, is FKG!

(for good boundary conditions)
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Renormalization

Step 1: Setup
Let an be the probability of a loop with values ≥ 2 (red loop).

0

0
0

0

h ≥ 2

n

n/100

Goal: To show there exists c > 0 such that for all n, an ≥ c
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Renormalization

Step 2: Easy Russo Seymour Welsh
Conditionally on the outermost loop, we can find two inner loops of
h ≥ 2 with positive probability.

0

0
0

0

h ≥ 2
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Renormalization

Step 3: Hard Russo Seymour Welsh
Forget the outer red loops (the inequality works in our direction).
Conditionally on both the inner red loops, we can find two (blue) loops
of h ≤ 0 with positive probability. This is an application of the RSW
step and FKG.

0

0
0

0

h ≤ 0

h ≥ 2
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Renormalization

0

0
0

0

h ≤ 0

h ≥ 2

This decouples the red loops. We obtain (after some work) ∃C, c > 0
such that ∀n ≥ 1,

an ≤ Ca2
n/100 =⇒ either an ≥ c or an ≤ Ce−cnα

.
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Russo-Seymour-Welsh Theory

Consider the strip Sn, the rectangle Λρn,n, and the segments {Ik}.

Let Hk be the event that Ik and Ik+2 are connected by a ×-path of
h ≥ 2.

The intersection of (at most) (25ρ+ 1) Hi ’s implies the existence of a
horizontal crossing of Λρn,n.

Λρn,n
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Russo-Seymour-Welsh Theory

By a union bound, the probability of connecting any particular Ik to the
top is comparable to φ0

Sn
[V×h≥2(Λρn,n)].

We define Tk to be the event in the picture, which restricts the
geometry of the crossing path.

When Tk and Tk+2 occur simultaneously, we have three squares that
are doubly crossed by ×-paths of h ≥ 2.

(n/2)× (21n/50)

centered rectangles
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Russo-Seymour-Welsh Theory

By a union bound, the probability of connecting any particular Ik to the
top is comparable to φ0

Sn
[V×h≥2(Λρn,n)].

We define Tk to be the event in the picture, which restricts the
geometry of the crossing path.

When Tk and Tk+2 occur simultaneously, we have three squares that
are doubly crossed by ×-paths of h ≥ 2.

Tk

Tk+2

Dark blue areas are
squares of size n/2
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Russo-Seymour-Welsh Theory

We now make a (rather major) assumption:

φ0
Sn

[Tk ] > c(ρ) · φ0
Sn

[V×h≥2(Λρn,n)].
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Russo-Seymour-Welsh Theory

We now make a (rather major) assumption:

φ0
Sn

[Tk ] > c(ρ) · φ0
Sn

[V×h≥2(Λρn,n)].

Condition on the value of h to the left of the leftmost path satisfying
Tk , and to the right of the rightmost path satisfying Tk+2.
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Russo-Seymour-Welsh Theory

We now make a (rather major) assumption:

φ0
Sn

[Tk ] > c(ρ) · φ0
Sn

[V×h≥2(Λρn,n)].

It will be sufficient to prove that probability of crossing the white
region horizontally is bounded below by a constant.

h ≥ 2
×−path
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RSW Proof: Step 1

We zoom in on the bottom square S−, and consider the event H̄,
where the right boundary is connected to the left by h ≥ 1 path. .

h ≥ 2
h ≥ 2

h ≥ 1

h = 0
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RSW Proof: Step 1

Thus, we deduce that the probability of H̄ is bounded below by

φ
0/2
S− [Hh≥1(S−)]

= 1− φ0/2
S− [V×h≤0(S−)]

≥ 1− φ0/2
S− [Vh≤1(S−)]

.

h = 0h = 0

h = 2
h = 2

h ≥ 1

h = 0
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RSW Proof: Step 1

Thus, we deduce that the probability of H̄ is bounded below by

φ
0/2
S− [Hh≥1(S−)] ≥ 1/2

h = 0h = 0

h = 2
h = 2

h ≥ 1

h = 0
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RSW Proof: Step 2

We zoom in on the middle square S, and look for a h ≥ 2 ×-crossing.

Unlike before, we cannot push boundary conditions of h = 0 in,

because h ≥ 1 is not the same as |h| ≥ 1!

a d

b c

r

s
u

v

h ≥ 2

h ≥ 2

h ≥ 2

h ≥ 1

h ≥ 1
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b c
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RSW Proof: Step 2

We look for a symmetric domain in other ways:

h× = 1

h = 1

h = 1

h = 0
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RSW Proof: Step 2

We look for a symmetric domain in other ways:

Figure: Blue is h = 0, × and black is h = 1, ×
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Thank you!
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