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The model

Take a finite graph G = (V ,E). Orient all the edges in both
directions. Call this E⃗ .
Fix a boundary vertex, call it ∂.

Definition

An spanning arborescence of (G, ∂) is a subset of E⃗ such that
Every edge has exactly one outgoing edge, except ∂ which has
none.
There are no cycles.
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Minimum spanning arborescence

Definition

An spanning arborescence of (G, ∂) is a subset of E⃗ such that
Every edge has exactly one outgoing edge, except ∂ which has
none.
There are no cycles.

Put i.i.d. weights coming from a continuous distribution (e.g.
Exponential (1)) on every e⃗ ∈ E⃗ .
The spanning arborescence with minimum weight (the a.s. unique
one) is called the minimum spanning arborescence.
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Goal of this work

Take an infinite graph G.
Take an exhaustion G1 ⊂ G2 ⊂ . . . such that ∪Gn = G.
Identify every vertex in the complement of Gn into a single vertex
∂. Call this Gw

n

Take T w
n , the MSA of Gw

n .
Observe that each T w

n is a measurable function of the weights in
Gw

n .

Question
Does the weak limit of T w

n exist as n → ∞? If yes, what can we say
about the geometry of such limits?
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Definition
End of a tree is the number of distinct, infinite disjoint paths we can
draw on it.

Example
Regular tree has infinitely many ends. Z has two ends.
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Theorem (R., Sen, 24.)

Take a ‘bounded subdivision’ of a regular tree of degree at least 3.
Then the wired, weak limit exists of the MSA exists. There are infinitely
many infinite components and each component is one ended almost
surely.

Theorem (R., Sen, 24.)
Same result as above for Galton–Watson trees with zero probability of
producing a single offspring.

Theorem (R., Sen, 24.)
In fact, same result is true in any nonamenable, unimodular graph
once we assume that the wired MSA limit exists.

It turns out that a sufficient condition for the existence of the wired
MSA limit is the ‘transience’ of a certain stochastic process called
‘Loop contracting random walk’.
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Motivation

The MSA has widespread applications in disease outbreaks,
approximating the traveling salesman problem, wireless networks,
natural language processing, genetics etc.

Since the 60s, a lot of effort has been put into finding a good
algorithm to sample this object due to Edmonds, Chu-Liu, Bock,
Tarjan, Gabow, Galil, Spencer...
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Motivation

The unoriented version of this model (Minimum spanning trees or
MST for short) has been studied by probabilists and computer
scientists (Kruskal, Prim, Schramm, Lyons, Peres, Addario–Berry,
Goldschmidt....). MSA has not received that much attention from
probabilists. It is important to rectify this.

Another viewpoint: this can be seen as a ‘ground state’ or a state
with minimal energy in a statistical mechanics model with disorder.
Existence of a unique ground state is an important open question,
for example in spin glass models.
My personal reason: it leads to cool mathematics.
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Algorithms for MSA: Kruskal and Prim’s/ invasion
percolation
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MSA depends on weights
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The CLEB algorithm (Chu, Liu, Edmonds and Bock)

We have G = (V , ∂) with weights (U0,⃗e)e⃗∈E⃗

Phase 1: contraction phase.
From every vertex subtract the minimum outgoing weight from the
weight of every outgoing edge.
Let Y1 be the zero weight outgoing edges.
‘contract’ any cycle.
We get a new weight collection (V1, E⃗1, (U1,⃗e)e⃗∈E⃗1

).

Iterate.
Stop when there is no cycle.
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The CLEB algorithm (Chu, Liu, Edmonds and Bock)

Phase 2: the uncontraction phase.

Order the loops contracted in reverse order.

‘uncontract’ the loops to get an MSA of (Vi , E⃗i) in every step.

∂∂ ∂
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Extensions of CLEB

We can expose edges in any order and contract loops as they
come. (Due to Tarjan).

Creates a collection of exposed paths in the contracted graph.
A useful choice: Always expose edges from the the tip of a
contracted path. (Gabow et al.) We call this CLEB walk algorithm.
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When the weights are i.i.d. Exponential, the CLEB process becomes
particularly pleasant, when we randomize over the weights.

Memoryless property of Exponential: If X1,X2 ∼i.i.d. Exponential
(1) then conditioned on X2 = min{X1,X2} and the value of X2,
X1 − X2 ∼Exponential (1)
The CLEB process now becomes the same (in law) as a ‘Loop
contracting random walk’.

Definition
The loop contracting random walk is transient if its ‘trace’ converges to
an infinite path.
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CLEB process/ Loop contracting random walk

It is sometimes useful to look at the projection of the edges exposed by
the CLEB process in the base graph G.

Lemma
Edges exposed by loop contracting random walk on G converges
almost surely.

Lemma
One can recover the MSA from the loop contracting random walk in the
infinite graph if the loop contracting random walk is almost surely
transient.
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Simlulation
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Loop contracting random walk

Theorem (R., Sen 24)
We prove the loop contracting random walk is transient on regular
trees, their bounded subdivisions as well as (infinite) Galton Watson
trees.

As a corollary, wired MSA limits exist almost surely in all these graphs.
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Lemma (Comparison with simple random walk)
Let v be a vertex in a finite tree T . Glue all the leaves into a single
vertex ∂. Let v ̸= ∂. Let

H := hit ∂ before returning to v

P(H occurs for Simple random walk)
≥ P(H occurs for loop contracting random walk.)

Unfortunately there is no 0-1 law for loop contracting random walk
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Proof of one-endedness

Question
Under what kind of local perturbation is the MSA stable?

Can we change weights locally so that

new MSA = old MSA \ {e⃗1} ∪ {e⃗2}?

u ∧ v

∂

~e1

~e2 uv
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Proof of one endedness

By some well established theory of unimodular graphs, we obtain
that the number of components are

infinite,
each component either has one or two ends,
there are zero or infinitely many two ended infinite components.

In the latter case, we perform a surgery: we glue two of them
together so that

there is a component with ≥ 3 ends,
we do it in an absolutely continuous way.
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surgery

to ∞ to ∞
to ∞

a1 b1

a2 b2

b′2
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Thanks for listening!
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