A short proof of the discontinuity of phase transition in the planar random-cluster model with q>4

Yinon Spinka Joint with Gourab Ray

University of British Columbia

Bristol, July, 2020

(日) (四) (문) (문) (문)

Introduction ●000	The random-cluster model	The BKW coupling	The height function ○	Proof of discontinuity O	Thanks ○
Percola	ation				

- Parameter: $p \in [0, 1]$
- Independently for each edge:
 open (keep) it with probability p,
 close (delete) it with probability 1 p.
- Random subgraph: $\omega \in \{0,1\}^{E(\mathbb{Z}^2)}$

Introduction ●○○○	The random-cluster model	The BKW coupling	The height function O	Proof of discontinuity O	Thanks ○
Percola	ation				

- Parameter: $p \in [0, 1]$
 - Independently for each edge:
 open (keep) it with probability p,
 close (delete) it with probability 1 p.
- Random subgraph: $\omega \in \{0,1\}^{E(\mathbb{Z}^2)}$

Question

Does ω have an infinite open cluster?

Introduction ●○○○	The random-cluster model	The BKW coupling	The height function O	Proof of discontinuity O	Thanks ○
Percola	ation				

- Parameter: $p \in [0, 1]$
- Independently for each edge:
 open (keep) it with probability p,
 close (delete) it with probability 1 p.
- Random subgraph: $\omega \in \{0,1\}^{E(\mathbb{Z}^2)}$

Question

Does ω have an infinite open cluster?

No if p ≤ ¹/₂ [Harris 60]
 Yes if p > ¹/₂ [Kesten 80]

Introduction ○●○○	The random-cluster model	The BKW coupling	The height function	Proof of discontinuity O	Thanks ○
Percola	ation				

 $\theta(p) := \mathbb{P}_p(\text{the origin is in an infinite open cluster of } \omega)$

Introduction ○○●○	The random-cluster model	The BKW coupling	The height function	Proof of discontinuity O	Thanks ○
Percola	ation				

Question

Does ω have an infinite open cluster?

Introduction ○○●○	The random-cluster model	The BKW coupling	The height function	Proof of discontinuity ○	Thanks ○
Percola	ation				

Question

Does ω have an infinite open cluster?

There exists $p_c = p_c(d) \in (0, 1)$ such that 1 No if $p < p_c$ 2 Yes if $p > p_c$

Introduction ○○●○	The random-cluster model	The BKW coupling	The height function	Proof of discontinuity ○	Thanks ○
Percola	ation				

Question

Does ω have an infinite open cluster?

There exists
$$p_c = p_c(d) \in (0, 1)$$
 such that
1 No if $p < p_c$
2 Yes if $p > p_c$

Question

What happens at p_c ?

B → < B

< □ > <

Introduction 000●	The random-cluster model	The BKW coupling	The height function	Proof of discontinuity O	Thanks ○
Percola	ation				

Image: A matrix and a matrix

3

Introduction	The random-cluster model	The BKW coupling	The height function	Proof of discontinuity	Thanks
0000					
Dorcol	otion				

Introduction	The random-cluster model	The BKW coupling	The height function	Proof of discontinuity	Thanks
0000					
Percol	ation				

1 Continuous phase transition 2 Discontinuous phase transition θ $\mathbf{A} \boldsymbol{\theta}$ p_c p_c • d = 2 [Harris, Kesten] • *d* > 19 [Hara–Slade 94]

Introduction	The random-cluster model	The BKW coupling	The height function	Proof of discontinuity	Thanks
0000					
Percol	otion				

1 Continuous phase transition

- d = 2 [Harris, Kesten]
- $d \ge 19$ [Hara–Slade 94]

- Not expected for any d
- Open problem!

The rea	adam alustar r	model			
Introduction	The random-cluster model ●0000	The BKW coupling	The height function ○	Proof of discontinuity o	Thanks ○

- Finite graph G = (V, E)
- Two parameters: $p \in [0,1]$ and q > 0
- Configurations: $\omega \in \{0,1\}^E$

-

The rai	ndom-cluster r	nodel D	ofinition		
	00000				
Introduction	The random-cluster model	The BKW coupling	The height function	Proof of discontinuity	Thanks

- Finite graph G = (V, E)
- Two parameters: $p \in [0,1]$ and q > 0
- Configurations: $\omega \in \{0,1\}^E$

$$\mathbb{P}_p(\omega) \ \propto \ p^{\#\{\text{open edges}\}} (1-p)^{\#\{\text{closed edges}\}}$$

The rai	ndom-cluster r	nodel D	ofinition		
	00000				
Introduction	The random-cluster model	The BKW coupling	The height function	Proof of discontinuity	Thanks

- Finite graph G = (V, E)
- Two parameters: $p \in [0,1]$ and q > 0
- Configurations: $\omega \in \{0,1\}^E$

$$\mathbb{P}_{p,q}(\omega) \propto p^{\#\{\text{open edges}\}}(1-p)^{\#\{\text{closed edges}\}} q^{\#\text{clusters}}$$

Introduction	The random-cluster model ○●○○○	The BKW coupling	The height function O	Proof of discontinuity O	Thanks ○
The ra	ndom-cluster r	nodel [Definition		

• Consider weak limits of measures on finite graphs.

• Consider weak limits of measures on finite graphs.

- Consider weak limits of measures on finite graphs.
- Two extreme limits:

- Consider weak limits of measures on finite graphs.
- Two extreme limits:

1 The free measure

- Closed boundary conditions
- The "smallest" measure

- Consider weak limits of measures on finite graphs.
- Two extreme limits:

- Closed boundary conditions
- The "smallest" measure

2 The wired measure

- Open boundary conditions
- The "largest" measure

Introduction	The random-cluster model	The BKW coupling	• The height function	Proof of discontinuity ○	Thanks ○
The ra	ndom-cluster ı	model P	hase transition		

Does ω have an infinite open cluster?

< 一 → <

The rai	ndom-cluster i	nodel P	Phase transition		
0000	oo●oo	OCOCOCO	The height function O	O O OF DISCONTINUITY	0

Does ω have an infinite open cluster?

There exists $p_c = p_c(q, d) \in (0, 1)$ such that 1 No if $p < p_c$ 2 Yes if $p > p_c$

The rai	ndom-cluster r	nodel P	hase transition		
Introduction	The random-cluster model ○○●○○	The BKW coupling	The height function ○	Proof of discontinuity O	Thanks ○

Does ω have an infinite open cluster?

There exists $p_c = p_c(q, d) \in (0, 1)$ such that 1 No if $p < p_c$ 2 Yes if $p > p_c$

$$\begin{split} \theta^{\text{free}}(p) &:= \mathbb{P}_{p,q}^{\text{free}}(\text{the origin is in an infinite open cluster of } \omega) \\ \theta^{\text{wired}}(p) &:= \mathbb{P}_{p,q}^{\text{wired}}(\text{the origin is in an infinite open cluster of } \omega) \end{split}$$

The rai	ndom-cluster r	nodel P	hase transition		
Introduction	The random-cluster model ○○●○○	The BKW coupling	The height function ○	Proof of discontinuity O	Thanks ○

Does ω have an infinite open cluster?

There exists $p_c = p_c(q, d) \in (0, 1)$ such that 1 No if $p < p_c$ 2 Yes if $p > p_c$

$$\begin{split} \theta^{\text{free}}(p) &:= \mathbb{P}_{p,q}^{\text{free}}(\text{the origin is in an infinite open cluster of } \omega) \\ \theta^{\text{wired}}(p) &:= \mathbb{P}_{p,q}^{\text{wired}}(\text{the origin is in an infinite open cluster of } \omega) \end{split}$$

1
$$\theta^{\text{wired}}(p) = \theta^{\text{free}}(p) = 0 \text{ if } p < p_c$$

2 $\theta^{\text{wired}}(p) \ge \theta^{\text{free}}(p) > 0 \text{ if } p > p_c$

The random-cluster model on \mathbb{Z}^d – one of two possibilities:

1 Continuous phase transition

Discontinuous phase transition Δ θ

The random-cluster model on \mathbb{Z}^d – one of two possibilities:

1 Continuous phase transition

Introduction	The random-cluster model ○○○○●	The BKW coupling	The height function	Proof of discontinuity ○	Thanks ○
The ra	ndom-cluster r	nodel н	istory		

< (17) < (17)

[Duminil-Copin –Beffara 2011]

< E

< 一型 ▶

Yinon Spinka

 q ≥ 25.72 via Pirogov–Sinai theory and entropy techniques [Kotecký–Shlosman 82, Laanait–Messager–Ruiz 86, +Miracle-Solé 91]

- q ≥ 25.72 via Pirogov–Sinai theory and entropy techniques [Kotecký–Shlosman 82, Laanait–Messager–Ruiz 86, +Miracle-Solé 91]
- Short proof for $q \ge 256$ (even for $q \ge 82$) [Duminil-Copin 2016]

- q ≥ 25.72 via Pirogov–Sinai theory and entropy techniques [Kotecký–Shlosman 82, Laanait–Messager–Ruiz 86, +Miracle-Solé 91]
- Short proof for $q \ge 256$ (even for $q \ge 82$) [Duminil-Copin 2016]
- [Duminil-Copin-Gagnebin-Harel-Manolescu-Tassion 2016]

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

2 Discontinuous phase transition for q > 4

- q ≥ 25.72 via Pirogov–Sinai theory and entropy techniques [Kotecký–Shlosman 82, Laanait–Messager–Ruiz 86, +Miracle-Solé 91]
- Short proof for $q \ge 256$ (even for $q \ge 82$) [Duminil-Copin 2016]
- [Duminil-Copin-Gagnebin-Harel-Manolescu-Tassion 2016]

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

2 Discontinuous phase transition for q > 4

- q ≥ 25.72 via Pirogov–Sinai theory and entropy techniques [Kotecký–Shlosman 82, Laanait–Messager–Ruiz 86, +Miracle-Solé 91]
- Short proof for $q \ge 256$ (even for $q \ge 82$) [Duminil-Copin 2016]
- [Duminil-Copin–Gagnebin–Harel–Manolescu–Tassion 2016]
- Short proof [Ray–Spinka 2019]

・ 同 ト ・ ヨ ト ・ ヨ ト

0000	00000	●00000	0	0	0
Main to	ools				

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● □ ● ● ●
Introduction	The random-cluster model	The BKW coupling ●○○○○○	The height function \circ	Proof of discontinuity O	Thanks ○
Main t	ools				

1 The Baxter-Kelland-Wu (BKW) coupling

э

Introduction	The random-cluster model	The BKW coupling ●00000	The height function ○	Proof of discontinuity O	Thanks ○
Main to	ools				

1 The Baxter-Kelland-Wu (BKW) coupling

- The random-cluster model
- The six-vertex model

[Temperley-Lieb 71, BKW 76, Glazman-Peled 2019]

Introduction	The random-cluster model	The BKW coupling ●○○○○○	The height function O	Proof of discontinuity O	Thanks ○
Main to	ools				

1 The Baxter-Kelland-Wu (BKW) coupling

- The random-cluster model
- The six-vertex model

[Temperley-Lieb 71, BKW 76, Glazman-Peled 2019]

2 Height function representation for the six-vertex model

Introduction	The random	n-cluster model	The BKW o●oooo	coupling The height	function Proof of discon	ntinuity Thanks
-					<i>c</i> :	

3

Introduction	The random	1-cluster mode	The BKW o	coupling Th o	e height function	Proof of dis ○	continuity	Thanks ○
E .	1			1.1.1	1	C.		

æ

Introduction	The random	-cluster model	The BKW of	coupling The he	eight function Pro	of of discontinuity	Thanks
0000	00000		000000	0	0		0
					C*		

Introduction	The random	1-cluster mode	The BKW o	coupling Th o	e height function	Proof of dis ○	continuity	Thanks ○
E .	1			1.1.1	1	C.		

Erom +	ha randam	ductor model	to loop co	nfigurations	
0000	00000	00000			
Introduction	The random-cluster me	odel The BKW coupling	The height function	Proof of discontinuity	Thanks

▲日 ▶ ▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ― 国

From the random-cluster model to loop configurations

Introduction	The random-cluster model	The BKW coupling	The height function	Proof of discontinuity	Thanks
		00000			
Е.			1 I	C	

æ

11 / 17

・ロト ・四ト ・ヨト ・ヨト

Introduction	The random-cluster model	The BKW coupling ○○●○○○	The height function	Proof of discontinuity o	Thanks ○
The si>	-vertex model				

• Arrow configurations satisfying the ice rule: 2 in, 2 out

Introduction	The random-cluster model	The BKW coupling ○○●○○○	The height function	Proof of discontinuity O	Thanks ○
The six	k-vertex model				

- Arrow configurations satisfying the ice rule: 2 in, 2 out
- **Six** possible types:

э

Introduction	The random-cluster model	The BKW coupling 00●000	The height function	Proof of discontinuity o	Thanks ○		
The six-vertex model							

- Arrow configurations satisfying the ice rule: 2 in, 2 out
- Six possible types:

Introduction	The random-cluster model	The BKW coupling ○○●○○○	The height function ○	Proof of discontinuity O	Thanks ○
The six	-vertex model				

- Arrow configurations satisfying the ice rule: 2 in, 2 out
- Six possible types:

12 / 17

Erom	the six vertex	model to le	on configur	ations	
0000	00000	000000			
Introduction	The random-cluster mode	The BKW coupling	The height function	Proof of discontinuity	Thanks

< 4 P < 4

æ

Introduction	The random-clust	er model	The BKW coup	oling	The height function ○	Proof of discontinuity O	Thanks ○
-			1 1 .		C		

• Split into loop segments:

∃> 3

13 / 17

Introduction	The random-cluster model	The BKW coupling ○○○●○○	The height function	Proof of discontinuity O	Thanks ○
-		1.1.4.1	C'	1.1	

• Split into loop segments:

University of British Columbia

э

Introduction	The random-cluster model	The BKW coupling ○○○○●○	The height function ○	Proof of discontinuity O	Thanks ○
E	hand have a		с		

◆ロ ▶ ◆母 ▶ ◆ 臣 ▶ ◆ 臣 ● の Q @ ●

Introduction	The random-cluster model	The BKW coupling ○○○○●○	The height function	Proof of discontinuity O	Thanks ○
-			<i>c</i> :		

<ロト <部ト <きト <きト = 目

Introduction	The random-cluster model	The BKW coupling ○○○○○●	The height function ○	Proof of discontinuity O	Thanks ○
The RI	XW coupling				

2

ヘロト 人間 とくほ とくほ とう

Introduction	The random-cluster model	The BKW coupling ○○○○○●	The height function ○	Proof of discontinuity o	Thanks ○
The RI	KW coupling				

15 / 17

<ロ> < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Introduction	The random-cluster model	The BKW coupling ○○○○○●	The height function ○	Proof of discontinuity O	Thanks ○
The RI	KW coupling				

Introduction	The random-cluster model	The BKW coupling ○○○○○●	The height function ○	Proof of discontinuity O	Thanks ○
The RI	XW coupling				

2

15 / 17

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

Introduction	The random-cluster model	The BKW coupling	The height function	Proof of discontinuity	Thanks
		00000			

Introduction	The random-cluster model	The BKW coupling	The height function	Proof of discontinuity	Thanks
		00000			

Introduction	The random-cluster model	The BKW coupling	The height function	Proof of discontinuity	Thanks
		00000			

Introduction	The random-cluster model	The BKW coupling	The height function	Proof of discontinuity	Thanks
		00000			

Introduction	The random-cluster model	The BKW coupling	The height function	Proof of discontinuity	Thanks
		00000			

Introduction	The random-cluster model	The BKW coupling	The height function	Proof of discontinuity	Thanks
		00000			

Introduction	The random-cluster model	The BKW coupling	The height function	Proof of discontinuity	Thanks
		00000			

Introduction	The random-cluster model	The BKW coupling	The height function ●	Proof of discontinuity O	Thanks ○
The height function					

• A six-vertex config is the **gradient** of a height function:

• The height function is defined up to a global additive constant

Introduction	The random-cluster model	The BKW coupling	The height function ○	Proof of discontinuity ●	Thanks ○
	C 11	1	11.00		

Proof of discontinuity by contradiction

• Fix q > 4 and consider the random-cluster model.

э

Introduction	The random-cluster model	The BKW coupling	The height function	Proof of discontinuity	Thanks
				•	
	Caller and the state	h	dia tan		

Proof of discontinuity by contradiction

• Fix q > 4 and consider the random-cluster model.

Introduction	The random-cluster model	The BKW coupling	The height function	Proof of discontinuity ●	Thanks ○
Droof	of discontinuity	, by contro	diction		

Proof of discontinuity by contradiction

- Fix q > 4 and consider the random-cluster model.
- Suppose it undergoes a **continuous** phase transition.

Introduction	The random-cluster model	The BKW coupling	The height function	Proof of discontinuity ●	Thanks ○
Proof	of discontinuity	, by contra	diction		

- Fix q > 4 and consider the random-cluster model.
- Suppose it undergoes a **continuous** phase transition.
- All clusters (primal and dual) are finite.

Introduction	The random-cluster model	The BKW coupling	The height function	Proof of discontinuity ●	Thanks ○
Proof o	of discontinuity	, by contra	diction		

- Fix q > 4 and consider the random-cluster model.
- Suppose it undergoes a **continuous** phase transition.
- All clusters (primal and dual) are finite.
- Every vertex is surrounded by infinitely many loops.

Introduction	The random-cluster model	The BKW coupling	The height function	Proof of discontinuity ●	Thanks ○		
Proof of discontinuity by contradiction							

- Fix q > 4 and consider the random-cluster model.
- Suppose it undergoes a **continuous** phase transition.
- All clusters (primal and dual) are finite.
- Every vertex is surrounded by infinitely many loops.
- Height function distribution does not depend on the sign of λ .

Introduction	The random-cluster model	The BKW coupling	The height function	Proof of discontinuity ●	Thanks ○		
Proof of discontinuity by contradiction							

- Fix q > 4 and consider the random-cluster model.
- Suppose it undergoes a **continuous** phase transition.
- All clusters (primal and dual) are finite.
- Every vertex is surrounded by infinitely many loops.
- Height function distribution does not depend on the sign of λ .

Introduction	The random-cluster model	The BKW coupling	The height function	Proof of discontinuity ●	Thanks ○		
Proof of discontinuity by contradiction							

- Fix q > 4 and consider the random-cluster model.
- Suppose it undergoes a **continuous** phase transition.
- All clusters (primal and dual) are finite.
- Every vertex is surrounded by infinitely many loops.
- Height function distribution does not depend on the sign of λ .

Introduction	The random-cluster model	The BKW coupling	The height function	Proof of discontinuity ●	Thanks ○		
Proof of discontinuity by contradiction							

- Fix q > 4 and consider the random-cluster model.
- Suppose it undergoes a **continuous** phase transition.
- All clusters (primal and dual) are finite.
- Every vertex is surrounded by infinitely many loops.
- Height function distribution does not depend on the sign of λ .

Thank you!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで