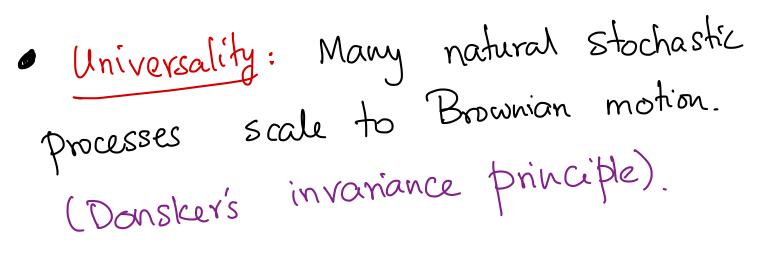
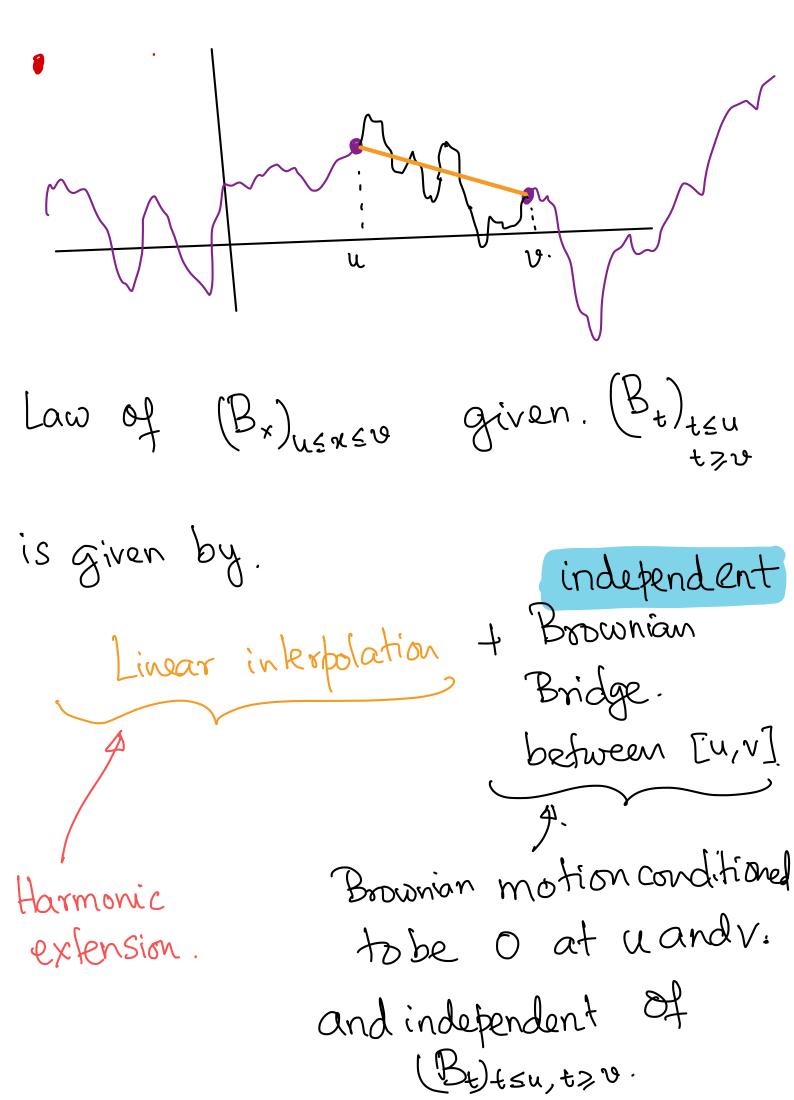
· Brownian motion is, by now, a classical object in probability theory.



· Markov property (one-sided). (Bt-s)t>s Conditioned on (Bylues. $\stackrel{(d)}{=} B_{s} + (B_{t})_{t>0}$ M Buliss S W S



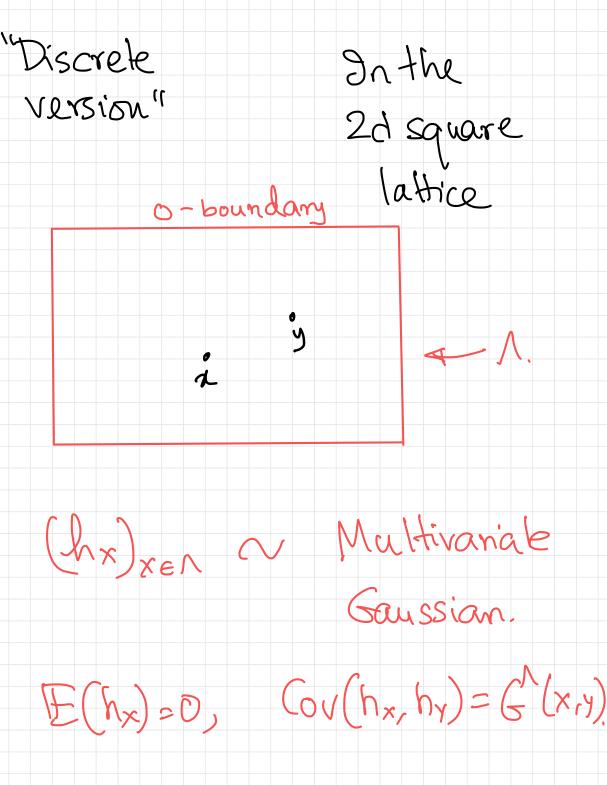
· Scaling property: (d) $(B_t)_{t \ge 6}$ $\frac{1}{\sqrt{c}} \left(\frac{B_{ct}}{t_{zo}} \right)$

2-D analogue of Bodwnian motion ??

(A "canonical" Gaussian process in R, (hx)xER², Which

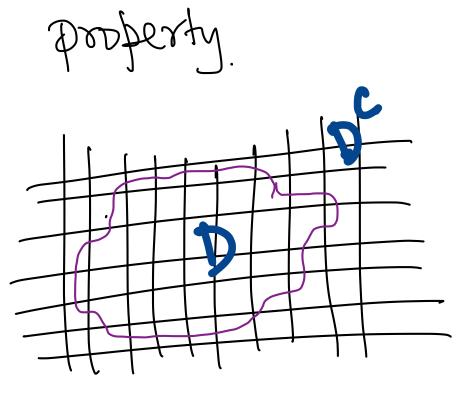
Symme tries "

has a



 $G^{\Lambda}(x, y) = Green's function in \Lambda.$ · Ga(x,y): Expected # visits to y by a Random walk started at 2. before exiting A.

Has a natural Markov



(hx) x ED conditioned on (hx) x ED c harmonic extension of (hx) FDC <u>(d)</u> + independent Gaussian free field in D.

Scaling limit? \ddagger $C^{\Lambda s}(\pi, \pi) \approx \log(1/s) \rightarrow \infty.$

Limit does not exist as Random functions But. But. $\lim_{s \to a} \sum_{v \in D} f(v) f(v) f(v) f(v)$ = N(0), $\int f(x) G(x,y) f(y)$ $\wedge dx dy$

Continuum 2D-GFF DGC, Simply conn. Def: (hg) & E C^o(D). (stochastic process indexed by smooth functions). (co (D): Smooth Compactly Supported functions in D (Endowed with product to pology). (i.e. specified by joint law of) $\begin{pmatrix} i \cdot e & specified by joint law of \\ h \phi_1 & h \phi_2 & h \phi_3 & h \phi_k \end{pmatrix}$ $E(h_{\phi}) = 0 \forall \phi$ with, € (ᢏ≈(D)·

 $\left(OV \left(\begin{array}{c} h & p \\ h & \phi_i \end{array} \right)^D \right) = \int \phi_i (x) G^D(x, y) \\ OV \left(\begin{array}{c} h & \phi_i \end{array} \right)^D = D \\ D & D \\ M & \phi_i \end{array} \right) \int \phi_i (y) dy dy$ Enough to define this by Gaussianity. Alternate definition in H¹(D). H'(D): Completion of the space of smooth compactly supported function w.r.t. the inner product $\langle f_{i}g_{\lambda} = \int \nabla f \cdot \nabla g = - \int f dg$ Gauss Green.

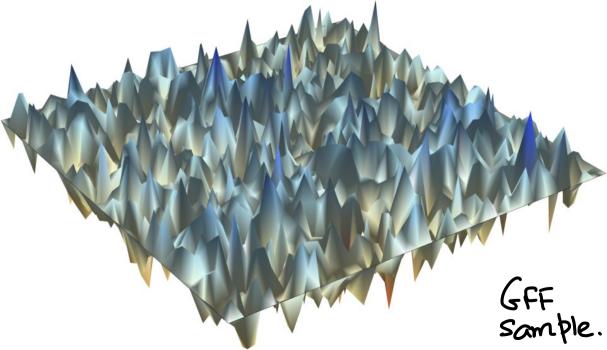
Then take on iid N(0,1) and set Gn: Orthonormal basis of eigenfunctions $h = \sum_{n=1}^{\infty} \alpha_n e_n$ exists a.s. in H'

T: Lawof GFF.

Sometimes us denote $h_{\phi} = (h, \phi)$ "Think integration",

Properties · Conformal invaniance (CI). Let f: D >> D' be conformal then $T^{D} = \Gamma^{D} \circ f$ where Tof is the law of the stoch. $=(h, \phi)$ Process $\left(\begin{array}{c} h^{\mathcal{D}'}, \\ \end{array} \right) \left(\begin{array}{c} \phi & -f^{-1} \end{array} \right) \left(\left(\begin{array}{c} f^{-1} \end{array} \right)^2 \right)$ $\phi \in \mathcal{C}(\mathcal{D})$ (Zero/Dirichlet boundary) (DB) 9f øn hass support → 2D and $\phi_{n} \xrightarrow{\to} 0$ then $(h, f_{n}) \xrightarrow{\to} 0$ $H^{-1}(D)$

Markov property (DMP). 1 Domain $h^{D} = h^{D'}_{D} + \varphi^{D'}_{D}$ h h is independent of hD $(hD, P) \neq C^{\infty}(D)$ has law TD' (GFF on D'). PD' is harmonic in D' (do is a stoch. processin RD with (PD', A) is the same as integrating against a harmonic function).



O A. Sapulveda).

· GFF is a canonical object. -scaling limits of many natural Stat. physics models: eg: Dimermodel, Six-verkx model (delocalized phase), Double Ising. etc. - Key "perturbation" of harmonic function used in construction of Liouville quantum granity. Random matrix theory. LETCL

Qn: Let (T) be a family of Stochastic processes indexed by $C_c^{\infty}(D)$. Then does the 3 properties. conformal () Domain () Dirichlet inv. () Markov () boundary Let h^{D} : sample from T^{D} . Thm1 (Berestycki, Powell, R., 18) YES if $E((h,\phi)^4) \leftarrow \forall \phi \in \mathcal{E}_{G}$ Thm 2 (Berestycki, Powell, R. 20) YES if $\exists 270, \mathbb{E}((h^{D}, \phi)^{HE}) < \infty, \forall \phi$

· Remark: Conformal Invaniane is not enough. ->: CLER Nesting field (Miller, watson, Wilson) 74 (Not even Gaussian). >. Planar Ising magnetization
field.

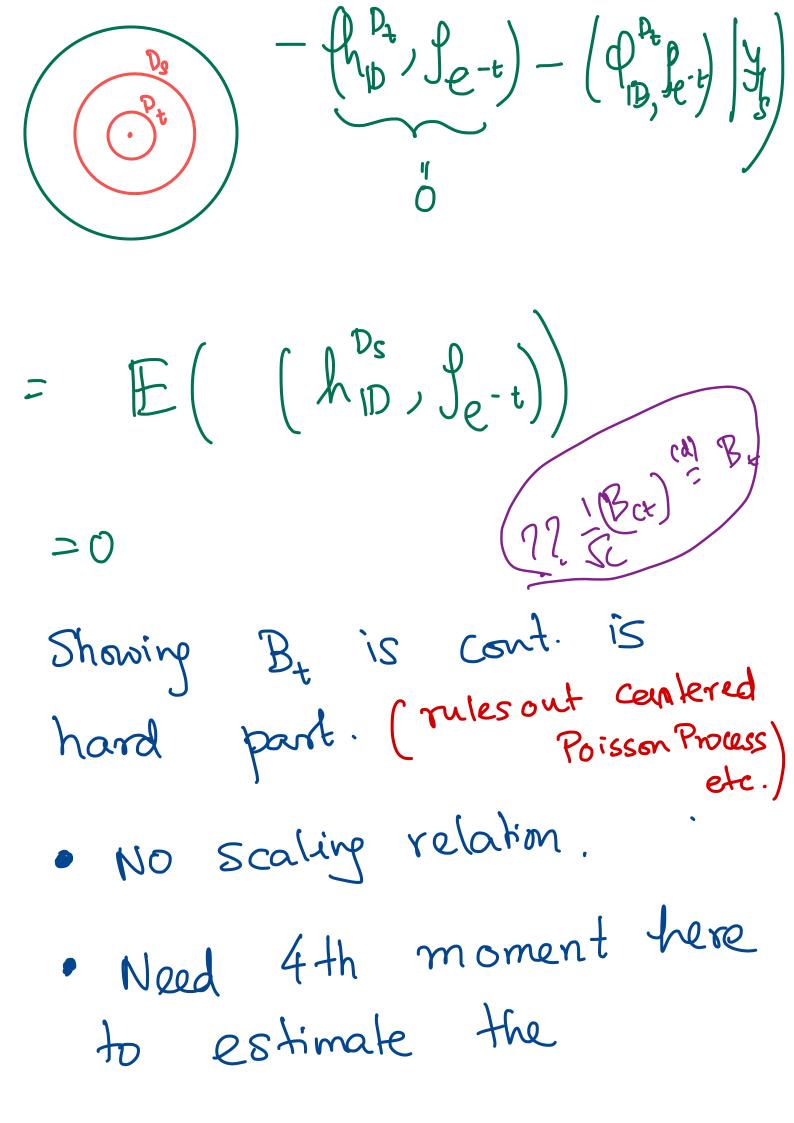
Characterize Future work: fractional Gaussian fields in IRd $(-\Delta)^{-S/2} \mathcal{W}$ $FGF_{s}(\mathbb{R}^{d}) =$ White noise. W: space time ----- Gaussian free field. S=1 $SE(01) \approx long range GFF$ with Brownian motion replaced by 25-Leng process.

Sketch c	of Proof	(Thm :	
· Step 1	L: Show	RD	is Gaussian
• Step	is	w Con Green's action.	
Key tool	: Circle (h, S	r) (Le	ler CI+PMP
Where	(f, f_r)	= 1 2117	$\int f(x) dx$ ∂B_r
(v v	Sr is no function, needs j		

Sketch of Proof (Thm 1)
Proof of Step 2 (Two point
function).
(Technical Step):
$$\exists a$$
 Covariance
kernel
 $k(z_1, z_2) := \lim_{\substack{z \to 0 \\ E(z_1)}} \frac{E(h_E^D(z_1), z_{z_2})}{h_E^D(z_2)}$
Where $h_E(z) = (h, S_E)$ (e)
 $\Im f_1 \quad D \mapsto D^1 \quad \text{is conformal.}$
 $k^{f(0)}(f(z_1), f(z_2)) = k(z_1, z_2).$
D:unitdisc
 $k^D(o, Y) = -a \log |y|, y \in D.$

Let $f(r) = \mathbb{E}\left[\left(h_r^{D}(0)\right)^2\right]$ Proof: $= E((n, g_r))$ Conf. Inv. & Domain Markov. $\Rightarrow f(rs) = f(r) + f(s)$ r,s <1 I is continuous (technical estimate) = f(1) = 0.-alog(s). S< 1 =>: f(s) = $\int_{\partial B_{r}} K^{\mathbb{D}}(0, \omega) f_{r}(\omega) d\omega$ $\partial B_{r} = K^{\mathbb{D}}(0, \omega) = f(1\omega 1)$ $= -\alpha \log |\omega|$ but f(r) =conf. Inv of K

Sketch of Proof (Thm 1) • Take D=D. (unit disc). • Take $B_t = (h, get)_{t > 0}$ Scale invariance => stationarity Vc (B_t+c)_{ter} = (B_t)_{ter}. B_t is a martingale : Fixset. With independent increment. D_u=e^{-u}D (E(B_t - B_s | Ħ_w)uss) $= \mathbb{E}\left(\left(\begin{array}{c}h\\D\\D\end{array}\right), \int_{e^{-t}}\right) + \left(\begin{array}{c}h\\D\\D\end{array}\right), \int_{e^{-t}}\right) + \left(\begin{array}{c}h\\D\\D\end{array}\right), \int_{e^{-t}}\right) \\ \text{ cancels } \\ \text{ J. by harmonich} \end{array}\right)$



harmonic functions and gef $\mathbb{E}\left(\left(B_{t}-B_{t+\epsilon}\right)^{4}\right) \leq C \mathcal{E}^{l+1}.$ (Note $\mathbb{E}\left(\left(B_{t}-B_{t+r}\right)^{2}\right)=CE$, =) By is a Brownian Not enough ?) To show joint Gaussianity of $h_{\xi}(z_{1}), h_{\xi}(z_{2}) \dots h_{\xi}(z_{K}).$ Need to extend Je to a notion of "harmonic" average Canbe defined directly OR by conformal invariance)

• Find a sequence of clomains approximating the joint Circle average.

Proof of Theorem 2. (Lowering the moments) A Show Gaussianity of Single Circle averages by showing I a.s. continuous modification B Deduce Existence of 4th moments of (h)) from this.

the upper PartA: Take [H] . half plane consider. the measure Þu $\sqrt{\sqrt{10}} \int_{0}^{10} \sin(\theta) \phi(\frac{e^{i\theta}}{\sqrt{10}}) d\theta$ $(\phi, p_n) =$ Pu: (Ito excursion measure) An · Supported on 2 (LID MH) · Does not have total mass 1. . We study "Sine averages". $Y_u := (h^H, h_u), u > 0.$

Ϊfo excursion measure $N = \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} |P_{i\varepsilon}|$ Priz: Lawof Browinian Motion starked at it killed on reaching IK. Lemma: Mass of excussions leaving rDnH through

 $\frac{2}{\pi r} \int_{a}^{b} \sin(\theta) d\theta.$

(reia, reib) is

Proof of	Theorem 2	(contd).
Recall:	$Y_{u} =$	(h#, Pu), u>0.
Prof: Yu	has an	nodification
which is	Gx (Star	ndard BM).
Profi Empl	oying pr	evious ideas
(a) (Scaling).	F (Yew) uzo	(Hand to
4c70		(Hand to prove for
		circle overages).
(b) (Y_t)	r <t<s (on<="" th=""><th>ditioned on</th></t<s>	ditioned on
	and (Yu)	is has

With some work we can show Wesdowski assuming $E([Y(u)]^{s}) < \infty$ for some $\xi > 0$ (seems to be new!).

