c ::::÷:::: G - Ray . (University of Victoria), Nov , 2020 joint w/ Nathanael Bergstydci (v.Vienna) and Ellen Powell . (Durham).

B. Brownian motion is ,by now , ^a classical object in probability theory .

• Markov property (one-sided). conditioned on ($(B_{t-s})_{t>s}$ Conditioned ou (Bu)uss. $(B_s + (B_s))$ $t \gtrsim_{\mathcal{O}}$. ' B_{s} + Dues. nrv.is?ht

Scaling property: (λ) $(\beta_t)_{t\geq0}$ $\frac{1}{\sqrt{c}}\left(\beta_{ct}\right)_{t\geq0}$

2-D analogue of Boownian motion??

(A "Canonical" Gaussian process in \mathbb{R}^2 , $(\lambda_x)_{x \in \mathbb{R}^2}$, which

Symme dries"

has a

 $G^{\wedge}(x,y)$ = Green's function in \wedge . •• GYM) : Expected # visits to y by ^a Random walk started at x . before exiting ^h.

Has a natural Markov

(hx) conditioned on $(h_{x})_{x\in D}c$ harmonic extension of (hx) $\frac{d}{d}$ + independent Gaussian free field in \mathcal{D}_1

 $\begin{picture}(120,110) \put(10,110){\line(1,0){150}} \put(10,110){\line(1,0){150}} \put(10,110){\line(1,0){150}} \put(10,110){\line(1,0){150}} \put(10,110){\line(1,0){150}} \put(10,110){\line(1,0){150}} \put(10,110){\line(1,0){150}} \put(10,110){\line(1,0){150}} \put(10,110){\line(1,0){150}} \put(10,110){\line(1,0){1$ Scaling limit?
 $\frac{\int \frac{1}{\sqrt{1-x}} \, dx}{\int \frac{1}{\sqrt{1-x}} \, dx}$

Limit does not exist as
Pandom functions $But:
\n $\lim_{\delta\to\alpha}\sum_{v\in D}f(v)\sqrt{e^{\delta}}\int_{v\in D}e^{i\zeta u}e^{i\zeta^{2}}$$ $=N(0, \int\limits_{\Lambda}f(x)G(x,y)f(y)dx dy)$

Continuum 2D-GFF, DCC, COO):
Def: (In 4) of E C° (D). Simply Compactly
Contact (In 4) of E C° (D). Supported functions in D
by Smooth functions). (Endowed with product topology). (i.e. specified by joint law of)
(hp, hp, hp, hp, hp,) $E(\mu_{\phi}) = 0 \Psi$ W ith, $E\mathcal{C}^{\infty}(D)$.

 $Cov(R_{\phi_i}^D, R_{\phi_i}^D) = \int \phi_i(x)G(x,y)$ Enough to define
this by Gaussianity. Alternate definition in $H^1(D)$. H'(D): Completion of the space of smooth compacily supported function w.r.t. the inner product $\langle \xi_{1} \xi_{2} \rangle_{\Delta} = \int_{D} \nabla f \cdot \nabla \theta = - \int_{D} 149$ Gauss Green.

Then take α_n iid N(0,1) and set Gr: Orthonormal
Lasis of
Ciganfunctions $\boxed{\begin{array}{ccc} & & \infty & \\ & & \sum\limits_{n=1}^{\infty} & \alpha_n e_n \end{array}}$ exists a.s. in H1 $\begin{array}{c} 0 & 0 \\ -\Delta \end{array}$

Mi Lawof GFF.

Sometimes Us denote $h_{\phi} = (h, \phi)$

"Think integration"

Properties Properties Conformal invariance (CI). Let f: Drs ^D ' be conformal then $T^{D} = T^{D^{\prime}} \circ f$ where F' ' of is the law of the Stoch . process ⁼ (h',ϕ) ($h^{(n)}$, $(\varphi \circ f^{-1})| (f^{-1})'|^{2}$ $\phi \in C_c^{\infty}$ • ¢zero/Dirichlet boundary) (DB) $9f$ ϕ , hass support \rightarrow 3D and ϕ_n then $(h, \phi_n) \longrightarrow 0$

Markov property (DMP). 1 Domain $\mathcal{U}_{D}^{D} = \mathcal{U}_{D}^{D'} + \mathcal{V}_{D}^{D'}$ $\left(\frac{1}{2}n\right)^{1/2}$ · h^{D'} is independent O_{f}^{2} h^D $(\text{hD}^{\text{p}}\!,\text{b})_{\text{p}}_{\text{cC}}(0)$ has law
 $T^{\text{p}'}$ (GFF on D'). θ $\varphi_0^{p'}$ is harmonic in D' (Op' is a stoch. Process in R^D with (PB', P) is the Same as integrating
against a harmonic function).

[O A. Sapulveda].

· GFF is a canonical object. scaling limits of many natural $shat.$ physics models : e.g. Dimermodel, Six-vertex model (delocalizedphase), Double Ising. etc . - key " perturbation" of harmonic function used in construction of Liouville quantum grand. · Random matrix theory.

 $Q_{n}:$ Let $(\Gamma^{D})_{DCC}$ be a family of stochastic processes indexedby $C_{\mathcal{C}}^{\infty}(D)$. Then does the 3 properties. Conformal ⑦ Domain Markov ^⑦ Dirichlet inv. boundary \Rightarrow Γ is GFTon D? Let h^D: Sample from T^D . Thin 1 (Berestycki, Powell, R. , " 18) M_E besteignt, when, it)
YES if $E(A^P, \varphi)^4$ as the Eli .
D) Thm 2 (Berestycki, Powell, R. YES if 3220, E (Lh^D, $\phi^{1+\epsilon}$ (200, Vg

Remarks: Conformal Invaniancis \Rightarrow CLE_K Nesting field (Miller, watson, W i Ism) 74 (Not even Gaussian). -> Planar Ising magnetization

Future work: Future work: inture work: characterize fractional Gaussian fields in Rd $FGF_{c}(\mathbb{R}^{d})$ = - $(-\Delta)$ S_{12} W . W: Space time While noise. $S=1 \longrightarrow$ Gaussian free field. $Sf(o_1) \approx \log$ range GFF with Brownian motion replaced by $2s$ key process .

Sketch of Proof (Thm1)
\nProof of Step 2 (Twoppoint
\n
$$
100 \text{ from each } k \text{ (rechnical Step): } 3 \text{ a Covariance}
$$
\n
$$
k \text{ and } k \text{ (2, 2)} := \lim_{\epsilon \to 0} \mathbb{E} \left(h_{\epsilon}^{D}(z_1), h_{\epsilon}^{D}(z_2) \right)
$$
\n
$$
k \text{ and } k \text{ (2, 2)} = \lim_{\epsilon \to 0} \mathbb{E} \left(h_{\epsilon}^{D}(z_1), h_{\epsilon}^{D}(z_2) \right)
$$
\n
$$
100 \text{ when } k \text{ (2, 1)} = k (2, 2) \text{ or } k \text{ (2, 2)}.
$$
\nD:unif disc
\n
$$
k^{(10)}(0, y) = -a \log |y|, y \in D.
$$

Let $f(r) = \mathbb{E}[(\mathcal{H}_r^D(o))^2]$ Proof: $\left(\begin{matrix}a\\ b\end{matrix}\right)^{4}$ $= E((\psi_{n}^{D}, \xi_{r}))$ Conf. Inv. O Domain Markov. $f(s) = f(r) + f(s)$
 $f(s) = f(r) + f(s)$
 \bullet f is continuous (technicalestinate) $9 - f(1) > 0.$ $-alog(s)$. **S** \Rightarrow $\frac{4}{5}$ $\begin{aligned}\n&\begin{cases}\n&\mathcal{R}^{D}(\mathsf{o},\omega)\int_{\mathcal{X}}^{(\omega)}d\omega\\
&\geqslant\n\end{cases} \\
&\leqslant\n\end{aligned} \Rightarrow\n\begin{aligned}\n&\mathcal{R}^{D}(\mathsf{o},\omega)=\oint_{\mathcal{X}}[|\omega|)\\
&=-\alpha\log|\omega|_{\mathbf{Z}}\n\end{aligned}$ but $f(r)$ $conf.Tnv$ of K

(Sketch of Proof (Thm 1) · Take D=D. (unit disc). Take $B_t = (4^p, 9e^t)_{t>0}$ Scale invariance => $Yc \qquad (B_{t+C})_{t\in R} = (B_{t})_{t\in R}$ B_t is a martingale: Fixset.
With Cindependent increment:
IE (B_t - Bs | Elw)uss) = $\mathbb{E}(\underbrace{(h_p^{D_s}, \rho_{e^{-t}})}_{indpt} + (\Phi_p^{D_s}, \rho_{e^{-t}})_{comcels})_{\text{indepth of }d_t}$

harmonic functions and get $\left(\frac{1}{E}((B_t-B_{t+s})^4)\right)\leq C\epsilon^{1+1}.$ $\begin{bmatrix} \text{Nole} & \text{E}\left(\overline{\left(B_{t}-B_{t\cdot r}\right)}^{2}\right) = C \end{bmatrix}$ \Rightarrow B_t is a Brownian NOT enough $\left(\begin{matrix} 0 \\ 0 \\ 0 \end{matrix} \right)$ 6 To show joint Gaussianity of $\ln_{\xi}(z_{1}), \ln_{\xi}(z_{2})...,\ln_{\xi}(z_{K}).$ read to extend i fe to a notion of "harmonic" average Lande defined directly OR by conformal invariance).

• Find a sequence of domains approximating the joint circle average.

Proof of theorem ² . (Lowering the moments). ^① Show Gaussianily of single circle averages $\left(\begin{matrix} B \end{matrix} \right)$ by Showing Fa. s. continuous modification Deduce existence of 4th moments of from this .

the upper Part(A): Take H . half plane consider. the measure μ $\sqrt{\mu} \int_{0}^{u} S\dot{n}(\theta) \phi \left(\frac{e^{i\theta}}{\sqrt{n}}\right) d\theta$ (φ, φ) = Pr: (Ito excursion measure) L'En . Supported on $\partial \left(\frac{1}{\sqrt{u}} D \cap \mathbb{H} \right)$ · Does not have totalmass1. We study "Sine averages" $Y_{u} := (h^{H}, h_{u})$, $u > 0.$

 $J_{\rm 1D}$ excursion measure $N = lim_{\epsilon \to 0} \frac{1}{\epsilon} P_{i\epsilon}$ W_{iz} : Lawof Brownian Motion started at is killed on reaching IR. Lemma: Mass of excursions

leaving rDOH through

 $\frac{2}{\pi r}\int_{a}^{b}\sin(\theta)d\theta$.

(re^{ia}, re^{ib}) is

$$
a^{\text{``linear}} - isn \text{krpolabin''}
$$
\n
$$
+ semithieg \text{ independant.}
$$
\n
$$
(\text{Hard to prove } \text{for circle average})
$$
\n
$$
\cdot (\text{Theorem (Wesolowski: '93)}:
$$
\n
$$
(a) + (b) + \cdot E(Y(a)) \text{ so } \forall a
$$
\n
$$
=), \quad Y = 6 \times \text{Srownian}
$$
\n
$$
\text{Mohon})
$$

\n- With Some Woolck we can show by
$$
Wesolowski
$$
 assuming $E(Y(u)^{\frac{5}{2}}) < \infty$
\n- Stems to be new!
\n

